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AN AUTOMATON ANALYSIS OF THE LEARNING 'OF A MINIATURE
SYSTEM OF JAPANESE

Kenneth Norman Wexler

Stanford University
Stanford, California 94305

I. Introduction

The purpose of this study is to do an automata-theoretic and experimental

investigation of the learning of the syntax and semantics of a second natural

language. Most studies in the psychological literature (e.g. Braine', 1963;

Epstein, 1962) that have tried to deal experimentally with the learning of a

small segment of language have analyzed only artificial languages. Crothers

and Suppes (1967, Chap. 6) analyzed the learning of some Russian syntarby

American college students, making predictions based on alternative concep-

tions of generative grammar but did not obtain significant differences

based on these conceptions.

The main thrust of this work is to ask what kind of an automaton can a

person become? Suppes (1968) showed that there is a sense in which the be-

havior of any finite automaton can be approached in the limit by a stimulus

sampling mod61. However, the thrust of our work was' not to construct a

model to capture the trial-to-trial changes in learning, but rather to see

what kind of automaton a subject could be at a given point of time, that is,

what kind of automaton the learner could useto structure information. We

considered various kinds of automata, made predictions from them (and perhaps

some auxilliary learning assumptions), and then tested these predictions

against data from a learning experiment to distinguish between the, models.

Another question we wanted to consider is the role of semantics in

language learning. There are two questions here. First', what effect



does the introduction of semantics have on syntax laming? Miller and

Norman (1964) suggested that perhaps semantics has no direct role in

syntax learning, that is, it gives no information'to the subject which

he uses to learn the syntax. Rather, semantics may have only a motivating

..role.- Minsky (1968, p. 20), on the other hand, conceived of-semantics

playing a very important part in the understanding,of syntax; namely, he

claimed that semantics restricts -the ,range of syntactic structures that

a sentence can have. This latter view suggests that semantics may have

the-same effect on syntax learning. That is, the introduction of

semantics. may aid syntax learning by restricting the possible syntactic .

structures.

A secondary question we wanted to consider that is ,relevant to

semantics is how the semantics itself is learned. We wanted to look at ,

a simple semantic. system to see if we. could say anything precise about

semantics ,learning. This was necessary, because almost no work has been

done on semantics learning: A recent book (Minsky, 1968) contains.a

number of articles, which. describe various attempts to introduce semantics

into computers.' But very little is said about how. a computer, might learn

these systems.

The above discussions put a number of: requirements-on our choice of

experimental materials.. The, material: had, to

(a) be drawn :from, natural language,

(b), have a-simple automata structure that we could specify, and

(c) have a simple semantics that we could specify,. :

These requirements were met by -the material we:ctose:,7.which

sub-domain of the set of arithmetic sentences in Japanese. Spoken

- 2 -



arithmetic in Japanese has.a simple syntax that we could .specify. -mhe.

semantics of the system is simply the semantics of arithmetic.-

To give some idea of what we mean by the- syntax andsemanticsThf

the smailZystem-of-Japanese we studied,.let us give anexamplein English.

Consider'the two sentences of English,spoken.arithmetic:

I. What is two plus three?

2. What 'plus two. is three?

First note that the syntax of the two sentences is different.

simple level, although.the words in loth sentences .are thesame, the

order of the words is different. But this is not-the only difference

between the two sentences; the meanings of the sentencesalso-differ.

We took as the meaning (or .semantics) of such azentence-its correct.

answer in arithmetic. Thus, denoting.meaningly A, we have-A (Sentence..

1) = 5 and A (Sentence 2) =:1. :Clearly, the.meaning of these,sentences.

does not depend-only on what words they contain,7 for Sentence:1 .and

sentence. 2 contain the samewords-yet have .different meanings: Thisof:.

course is exactly thesamestate of affairs as in :natural language ;in

general, e.g.; "JohrCloves.Mary" is (alas) different in meaning from-

"Mary:loves John,"

To what eXtent.are,we justified in taking the'seManticzof. a!'

question to.be.its Correct answer? The most serious study of semantics.:

has leenAm logic where models which-allow one -to determine thetruth of

a sentence are studied. The sentences considered are generally propositions,

not questions However, - -we can consider a question.tobe derived.ly a

transfOrmation:Irom aA)roposition withEyvariabIe in.itand.weoan then

say that. the 'meaning of,a.question is that word.oriphrase(in,ourcasz...



number) which makes the underlying proposition,truewith respect to. :the,

semantic model.

These considerations are discussed more precisely in,- Section III.

Since they `are not.central to the major reason for our formulationpf:_

the experiment, we will not discuss;them-further. Before-we turn.to.a-,'

brief description of the experiment we want to point out-the:obvious

fact that the experiment deals with only'a very small, limitedsystem

of language. While-our ultimate goal, of course, is to understand the::

course of-language-acquisition in:general, .we have chosen to'work with

a small experiment so that we can formulate precise theories which are.:

also-precisely testable. The rich nature of epoken language in evem4a.

young child makes precise testing of for-example, automata,modelsvery -,

difficult if they are-to apply to the whole range of language. . For,

example,, one of the main points of our-study is the comparison o two,

automata, both of which predict learning at asymptote:: Discrimination,

between theautomata:ispossible by comparinvdetails of ,learning:,.-;.,:If:,:-

we.were.tcrapplythe same procedure. to a large:,rangecf.natural-language,

we would first have to-: -write automata to"describe,this:language.

prefer to leave this task as. an exercise for the linguists.. Then:we

would have to precisely'observethe course, of language-acquisition.

. Although n number -of investigatorehave.studied,.say, child-language.at

.a few given points of time, very little-of:a. systematic nature-has-teen*

said. about,the course-ofAevelopment -over time.

For reasons of'theabove sort,.we eettledon.a simple experiment. as

an- appropriate-way to.study some aspects of language learning: 'he

materials learned have are.sufficientlyreimilar to.those



demanded by linguistic theory that we call them a "miniaturelinguistion

system." Inthe experiment subjects learned syntax .by being exposed to.

. sentences of:this system. We did not teach them any:rules. There..seems

to .be-general- agreement that rules are not directly taught,to.children

learning,a first language. Also, it is commonly said that theJ)esty,ray,

to learmaJsecond language is,to go to a country where that language is.

spoken .and-,learn it, not by learning rules, but by being exposedto..the

language.. For-these reasons we did not present :rules to:the-subjects.

In general, we feel that-the experimental, situation provides a reasonable

mode.of_some.(though certainly not all) of the conditions of, language.

learning. Thieis especially true of the sentences that are presented.
,

with associated "meanings. ":

The Experiment

A complete description of the experimental method appears in

Section IV. Here we give only a brief over-view. Before specifying

exactly the set of Japanese sentences used in our experiment, I might

mention briefly a pilot experiment in which we used a much broader range

of sentences and a different experimental method. The materials were

sentences that contained two numbers and a variable and the four

operations: addition, subtraction, multiplication and division. The

base sentences, in other words, were of the form x + 2 = 3, 2 + X = 3,

2 + 3 = x, plus the same sentences with the other three operations

instead of addition. The integers 0 to 9 were used and only sentences

whose correct answer was positive or zero. The sentences were the

Japanese sentences derived transformationally from the above equations

(see Section III). -A subject, anAmerican college student, heard a large



number'bf,these-sentencesthatis,heisaW a.--Jaridnese6peakersaYingcthem

on television,'and:after each.sentencesaW;thecorrect:;andwerappear:ona

the screen: The,subject's job:was to;vrite'the.correctatiSWer inthe,few

seconds provided between:thetime he,hearcrtheSentence.tandthw/answer

was'presented.To give an example, using,Englishriinstead=of1Japanesel

the speaker might say;:"what-plus twoequals.'fiverhA few-;:eeconds. oJ

transpired; and the digit 3 was Ilashed,:onthesCreen;=-The',Subjectwho

was toldthe--correct--answer.was a:digit.?,fromJ)to-9,triedtO writethel

'-:correct:answerinthetiMe,;before:it..appeared-on the.icreem:- ,The'Jlext

stimulus_Might:bewhat7isA divided by.3eand..thepreSentedcan§werb:pz

would beY'2." Theonly:4apanese-thesubjectSknew::beforethese-Lij

sentences were.started were the integers from Oto9;..mhich2theylearned

as paired associates. The stimuli were spoken Japanese words and the

responses were.written numerals.

Subjects did not learn in this experiment. After eight experimental

sessions of about 45 minutes each, no subject had yet learned, and it did

not look as if they would. The proportion correct did go up over days,

but analysis of the results suggested that this was mostly because
. '

subjects were guessing better, that is, their answers were drawn from

the possible set of answers given the four operations and the two integers

they heard. For example, with the two integers 2 and-3 in a sentence, the

only answers could be 5, 1, or 6, since 3 divided by 2 is not an integer,

and the subjects knew that the answers were integers. So here the subjects

learned to guess 5, 1, or 6 on a sentence which contained the integers

2 and 3.

Since the subjects did not learn the structure on this experiment,

there is little interesting to say about it, and I shall not discuss it

- 6-



in any more 'detail. The ekperiMent was usefUl,'-however, for'we saw how

to modify' 'it' to obtainAnOre interesting results . '.First, it seemed. that

'the7material was-too complex: The sentences. used made up alarge

portionof'the (short) sentences obtained-by,our grammar Since this.

was too much, it was decided that theAmterial in the-main experiment:

was to' be limited to the use of' one operation, addition. Second, for

the same'ieasons, we :used Only _the integers from 0 to5. Third, the

method of-presentation was so,difficult thathe subjects had, no chance

tO attend to the structure: A new method was adopted which allowed the

subject to concentrate on one word at a time. -Fourth,: since the subjects

did not-learri,:,and a number of them complained that they could not tell

what the words'were (i;e6 they Yceuld.notisegment);, inthe new experiment

pretraining'was given on the "function ": words, i.e., the non-numerical

words. This was not translation training, but it was enough to 'allow.,

the subjects'to identify thewords,wheh they heard ahem in sentences.;,.

The.Japanese*sentences finally selected:.contained only the

addition operation.. EaCh sentence-contained exactly two number words;

and a variable.' That is they were the:kind of sentence whose meaning

was theanswer.They'were-the Japanese sentences whese base sentences

(see'Section-III) were of the form N = N,: N +-x .x.-Ac, or 1, N = x,

'Where' N was an integer from .0 to 5. HIn. Japanese these sentences, read,

respectively,.. "ikutsu tasu'N desuka" "Ntasu'ikutsu wa.Ndesukai"

-and '"N tasu N wa:ikutsudesuka," where we allowedYN to stand fors.ny

integer. "Ikutsu" means "what." "Tasu"-is Japanese for-Vadd.!' "Wa"

is a post-,position; analagous syntactically tu English prepositions, but

Toccurs:after:a noun "Desu"'means and "ka" is a question marker;



Thus,.. atypical sentence, our'subje.ctsmight heariAvas, "IchX,t4s4,ikutsu

WasanAesuka" ("ichi" is 1i -and san",-1s,3), one plUs:whatj.s

The experimentmas.carriedout four.parts, one part :,taking: place

after the'previous part was completed. lmPart the.subjects:had pre-

training on the four function words,. "ikutsu;" ":tasu," ."Avai" and:"desuka."

They had to write. the 'first letter ofHthewordwhen they heard the word

spoken by A Japanese speaker on closed - circuit television. PartlI

consisted of paired-assoCiate training.onthe:Japanese integers:from 0

to 5. The speaker said an integer, the subject wrote a.digit, and then

the correct answer appeared.

Part III was the main.part-of the: experiment, for which,,Parts

and II'were necessary pretraning:.LHers the subjectbad-to learn the.

syntax of the addition:sentences described-above. :: ..Asentence:vas

preSented slowly. .-That isi, therewerea few seconds, between eacil:word

in the sentence. _In this time the subject wasto write what words he

thoughtcould possibly. appear: as the next word. : This procedure was

chosen so'as toAlelpthe,subject learn the-syntax and forcedJiimtopay

attention,tothe:sentence structure. n-the sentences chosen it was

always the:case that either:one ortwo words couldhave been,thenext::

word. (Subjects were told not to:distinguishbetween:numbersibut

.!they thought,a,number could be next to simply write ,N for number)The

first position in-all sentences:could13e"ikutsu" ora,riumeral.

second position was alwaystasu."- The third: position:could-be "ikutsu'

or a numeral,, if the first position'wasanumeral, but if the first:

position.wasikutsU" then the third: position;: md to beaAiumeral., In

the third position-we see for-the firsttiMe the influence..oftbe-history



of the sentence (i.e., preceding words). The fourth word 40 to be "w

The fifth word had to be a numeral if an ikutsu had, already appeared.

Otherwise it had to be "ikutsu." Once again the influence of the past

history of the sentence is seen. The sixth and final word had to be

"desuka."

After the sentence was spoken slowly in this manner, it was spoken

again, this time at a more normal rate. At this point we-considered..

two groups of subjects. The semantics group (group S) now had the task

of, answering the Japanese question they had just, heard. The.sentence

was repeated so that the subjects would not have to remember. the
,

semantics while concentrating on the syntax in the first part. AftPr

the sentence was read for the second time, the subjects wroteA numeral
,. ,

from 0 to 9 which was supposed to be the answer to the. question. After

the answer, a digit from 0 to 9,appeared visually on the. television

screen, the next sentence was presented, slowly.

The other group of subjects did not have this semantic task.

Instead they had some other task, or none at all, depending on the sub-

group in which they were located. (All of these experimental.details

are presented in Section IV. If they are not important for, the,

discussion they will be ignored until then;) for this nom-semantic (g)

group, no number appeared on the television screen.

The reason for running group S was to observe. the effects of

semantic practice on the learning of syntax. (Only. group. S. was needed

to study semantics learning.) The two hypotheses considered about the

effect of semantics on syntax learning appear:to make different pre-

dictions here. If semantics acts as a motivator only,-then we have no

- 9-
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reason' tO.exPecta:diTTerential:effeCtOn the `six responses. That is,

r
group S should do better than group S on all responses in the syntax

learning task. If, on the other hand, semantics helps syntax learning

by restricting the possible structures, then only those responses on

which the semantics actually restricts the possibilities should be

'helped. These 'considerations will hediecuSsed somewhat more completely

in' Section''III, WhiCh deals with the sethantfc mOdel.

-Part IV of the ekperiment was carried out as a check on Part III.

in 'this part 50.Sentences were Presented, half of them "grathmaiIcal" (

and half "ungraMmaticain (U). G sentences Weresentences'of the form

presented InPixt III. U sentences, with the-exception of four sentences

1 1

which' we do not disCUSS now, contained "ikutde andOnly one numeral.,

second "liutsn" occurred where one Ofithennumerals would occur in a

G sentence. Otherwise, the U sentences were jUst like the other

sentences. An example of a U Sentence is ikutsu tasu 1 wa ikutsu

desuka... The sentences were Presented one at a time, and the subjects

had a TeW'SecOnds to Write a 1 Tor grammatical or "a 0 for ungrammatical.

After the correct answer,' a 1 or a 0, appeared on the screen, the next

sentence :'was presented.

Part IV'was a check of Part III in the f011owing sense. One of

. ,

the main things we wanted to find out in-Part III was whether the subjects

would learn the syntax, in a sense to be defined later. If subjects

had learned`in Part III, then they should learn Part IV quickly, since

the infOrmation needed- in'PartIV'Wa6 a sub-set of the information needed

in Part Siiecihca11Y; aUbjeCteWhO had learned Part III ShoUld'

learn Part IV more qnickly than subjects who had not learned Part III.

- 10-



If the difference in learning was not large, we might believe that

subjects who had not learned-Part III by our definition had nevertheless

learned MUCh-of the StrUcture

A'suMMary-ofAhe three things we are loOking at in-this-study is

1 Most iMpOrtantly, syntax learning,

2 The inflUence of semantic practice 'on syntax learningand

. Briefly semantics learning.

11-



II. .Automata,Theories for Syntax ResponseS

In this section I shall define kinds, of automata to see how

to,make,predictionsfrom them about syntax, learning in, the experiment.

Definitions of automata will be,needed in the course of the theoretical

development. These definitions are given, where needed, but almost no

discussion of them is given, since there are many adequate sources for

such discussion.

First, we need the definition of finite automata. In an attempt to

keep notation standardized in psychological applications of automata, I

shall follow the notation of Suppes (1968), which is in essence that of

Rabin and Scott (1959). However, the model of an automaton given there

is not quite what we need o model this experiment. The model is

appropriate in that it is a recognition device that decides what strings

are acceptable, but the only way it does this is to determine whether the

string brings the machine to an appropriate final state. The final state

does seem to have psychological justification, relating to the end of a

sentence. However, people understand sentences as they are spoken and,

in general, do not have to wait for the end of a sentence to know that

it is nonsense or extremely ungrammatical. Specifically, in our

experiment, subjects were called on to respond with the next possible

inputs after each input. We could define a process whereby they could

do this by projecting into the future and seeing what continuations of

the string bring the machine to a final state. However, this does not

seem at all to be a reasonable model especially when another one is

available.
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The problem is that in the Rabin and Scott definition, the transition

function M is a function from the Cartesian product of the set of states

and set of inputs. So this transition .must be defined for every state,

input pair. There is a state-diagram for a finite automaton that

describes our language in Figure 1. From each state only a few inputs

are accepted. The other inputs could be defined as taking the states to

Insert Figure 1 about here

which they do not apply into a_collection .siate;" which thencyclaa

back to itself with each input and is not a member of-the set of final"

states so that no, -such string will be;,.aceeptedt But if the subject is

to make his responsebn the baiis of what inputs. can come next in the

automaton, there is nothing to prevent him from pickihg the.inputs that
. .

go to this "collection" state, unless he makes extensive calculations

about what can lead to a final state. This seems unreasonable in the

limited amount of time he is given.

.A model does exist that captures the properties we want. This is

what Ginsburg (1962) calls an "incomplete 1-automaton." We follow

Ginsburg's development, using as much as possible the notation of Rabin

and Scott. Since the class of languages generated by incomplete 1-automata

is equal to the class of languages generated by the automata of Rabin and

Scott (Ginsburg, 1962, Lemma 4.7, p. 131), we call our machine a finite

automaton. The form of definitions closely follows Suppes (1968).

DEFINITION: A structure .11.1 = (A, E, M, so,F) is a finite (deterministic)

automaton if and only if

(1) A is a finite nonempty set (the set of states),

- 13 -



Fig. 1. State-diagram foT the finite automaton



.(2), E is a finite nonempty set(the alphabet or.inputs),...

(3) M: is a function from a subset of the Cartesian product.

A X E to A OW is the transition table),

(4) . is in. A (so is the initial state),

(5) F. is a subset of. A IfF is the. set of final .states)

The only difference between this definition and thatof.Suppes is in (3),

where the domain of M is specified as'a subset of the.Cartesian product.

E* is the set of finite sequences (strings or tapes) ofelements of

including the empty sequence The function M is extended.to.a.

function from a subset: of A X E to,- A by the, following;

DEFINITION: Let Ql, , ak be a string in E and let s be.in

M(s, Ck) is said to exist if each state, p Hand.

s .
1

= M(s.,C.) exists, for i 5 k. When M(s, al,..,; Uk) exists, it
+1

is defined to be the state s

DEFINITION: A string x of E is accepted by 11 ,if: and only if

M(s
0'

x) exists and is in: F. -A string accepted by 9 is a.sentence,of

91'

DEFINITION': The language T(V4), generated by 2. is the set of all

strings accepted by 94.

At.this point I want to consider some,special.definitions,that.

attempt to model what the subject had to do.in the syntax learning,. task.

The subject had to decide, according to the instructions, what.,the next

possible words could be, that is, what the next acceptable inputs were.

If we conceive of.the :subject as ;a finite automaton, we can, define a

notion of response that captures the process of the subjectYs.response.

-13



DEFINITION: The,response r of the finite automaton is a function

from the Set'Of states A to the set of subsets of inputs 2 -such that

for s E A,

r(s) = fa E E such that there is an s` ,E A such' that hi(s,a) =

In other words,'given the state of the automaton, r is the set of possible

next inputs. The motivation for defining "response" is that if d'subject

in our experiment 'flbecame"-a finite automaton and his task was to write

the next possible inputs, he would do so based on his current state, i.e.,

produce the-"response." To give an example, consider the finite aut-

omaton FigUre'l shows that M(s0,N) =
1

and'-M(s
0
,I) = s

2
and '

that there is no'other input a such that M(so,a) exists. Therefore;

by the definition, r(s0) = {1%1,4. Likewise, r(s1)_=.fTland r(s10) =.95,

the empty set. The function r is computed in the-same manner for the.

other states.

Instead of defining the finite automaton as a recognition devfeeand

then constructing the."response" of the automaton,.we might note another

possible approach to modeling our experiment would be to define the

automaton as an output device, or a Moore machine. 'That is, each .tiMa2,

the machine reached a state it yielded an output that depended only:-on

the current state. For our purposes the output would play :theiroie of

response'in the current construction, and no special definition of,

response would be.needed;

A problem with this approach is that an entirely new output .1unotiOn

would have to be defined. Let 0 be the output function and the,aut--

omaton as in Figure 1. Then the output alphabet would be defined''

as 2 , where E fN,I,T,D,W1 and set, for example, 0(s
o
) = fN,I1 and
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0(s
1
) = fTl. In other words, it is clear that we would set O(s ). r(s ).

By adopting our method we have actually defined an output. The important
,..

point is. that a natural method has been provided for finding the output

instead of arbitrarily assigning theappropriate yalues.

I now return to our development..

DEFINITION: A language L is a sub-set. of. E. . An initial segment z of

.L is a string z E L such that there is.a.string ,E (E* - {Al) such

that zw E L.

The elements of L have been excluded from being initial segments,

because this is useful for expeiimental purposes. For other purposes,

it might b '-desirable to include them'. Denote by tg(L),. the,set,of all

initial segments of L.

DEFINITION: The next-word function of L is a function n from q4(L)

to (2E - fAl) such that if w EN04(1.) (i.e.,' w is an initial segment of

.

L), then' n(*) = fuEE such that there is a zEE suchthat

In other words, given an initial string, n tellS us what letteraMay

come next. Note that in the above definition n(A) is the set of initial

letteraof L.

DEFINITION: Let ¶!L be an automaton and L be a' language. We say that

%I responds correctly to L if (letting r be the responsaoi 2t, and

be the next-word function of

(1) r'N) n(A),

and for all x E.444(L) {Al).

(2) M(S
0'

x)
0

exists and r(M(s ,x)) = n(x).

This definition explains what we mean by learning syntaX -A Subject who

learns the syntax *ill'"respond correctly." That is, he will give the

appropriate next possible words.
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Now, consider an automaton-for the Sample of Japanese ariihmetid.

As mentioned in Section-I we do not" haxie to consider sentences that'

differ only in the numerals' they use. We can assume that, dile to' our

instructions, the subject cOdes a numeral he hears as N. At any rate;'

the responses contain no individual numeral; only N, and our theory aims

to explain the respOnses. Usingthenotation-of the first letter Of'

Japanese word to Standlorthatword and-using N to' Stand-for a: numeral,

there are exactly three sentences in our language, which we'Will call J.

J = T"""NWID,NTIWND,ITNWND}.

A transition table;,for aHfinitsiautomaton such that T(.): = J,:is

shown in Figure 2. This automaton has the state-diagram shown, in Figure 1.

Insert Figure.2 about here

= (A,E, s ,F) where A = {s.,0 5 i s 101, E =.fN,,T,W,Dj and

F A.sirTle calculation shows that responds correctly to

and that T( ) = J. Therefore, if we assume that our learner becomes .a

finite automaton, we would predict that in the limit he will learn the

syntax of J in the sense that he will respond correctly to J..

However, the intuitive feel of the automaton is not quite right.

The states do not seem to make psychological sense. For example, after

one input, is in either s
1

or s
2

but s
1

and s
2 1

can both

accept T. Since in both sentences T appears at the same time, some-

how the states that accept them, should be related. In other words, if

an input word appears in the same place in two different sentences, it

should show. up in the state structure of the automaton. The next
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8 9

9

0

I0.

Fig. 2., Transition table for the finite

automaton For simplicity, a
state is denoted. i instead of

s. as in the text.
1
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definition yields a kind of finite automaton that seems to have the

properties we want.

DEFINITION: An ordered-state finite automaton (OSA) iv.a finitd:autdniaton

such that :for 411 Narid-,M(ta ) exist, then
.-1--k

M(s.,a.) =Ala(svaid.

It follows from the definition that at any given time (i.e., after a

given number of inputs) there is only one state that,an ordered-state

automaton can be in, no matter what the past history.- The ordered-

state automaton is of interest to us mainly where there are transitions

that are not defined. In an ordered-state automaton, if all transitions

are defined, that is, if Ws,a) exists for all states s and inputs

a, then clearly for any integer k either all strined"Of length k are

accepted or none are. That is, whether the automaton accepts or rejects

a string depends only on its length.

To us it makes a lot of intuitive sense to suppose a subject

becomes a sequential automaton. The state of the automaton is directly

linked to time. The subject can learn where T appears, in a sense,

by learning that it always appears in second position. What sequential

automaton can behave like J? None, as shown' by .the following.

THEOREM: There is no ordered-state autOmaton that responds correctly

to J.

Proof: Suppose g is an OSA which responds correctly to J. Recall

= {NTNWID,NTIWND,ITNWND }. Since 21 responds correctly to J, M(s0,I)

and M(s0,N) exist. Therefore, by,the definition of an OSA, M(so,I) =

M(s
0
,N). Call this state s

1
, and set M(s

1
,T) = s

2
. Therefore

M(s0,NT) = s2 and M(s0,IT) = s2. Therefore (Letting n be the next-
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word function of J and-' r be the response of

r(s,) = n(NT). and r(s2) = n(IT). Therefore n(NT) = n(IT).

Inspection of J -reveals that

n(NT) = and _n(IT) = Therefore n(NT)- n(IT).

Therefore we have a contradiction, and the theorem is proved.

Since there is no ordered-state automaton that responds correctly

to J, we can predict that if the subject becomes an OSA, he won't learn

the syntax of J, that is, he won't respond correctly at asymptote. In

fact, this was the first hypothesis we developed about the experiment.

It is interesting that we can predict the subject will not learn

from assuming that he'becomes an ordered-state-automaton independently

of any assumptions about the course of learning, that is, of the trial-

by-trial changes in the subject's responses or even his automaton; The

prediction rests upon the way the subject structures information. . An

ordered-state automaton severely limits this structure. If we add the

additional assumption that the automaton is loop-free, is is clear that

the language generated by an OSA must be of the form

A. 2£) in the language of regular expressions, or, in other words, a

2°
..A

n
(where

-

Cartesian product of sets of inputs. Of course, there is no such

representation for J.

If the subject ignores the past sequence of words, except for letting

them tell him at what point of time the input is, his responses will be

simply those words which can come at the next point of time for some

input string, and his sequence of responses will be NI,T,NI,W,NI,D

where NI indicates that both N' and I were placed in a box. This,

of course, can be cast in the-Cartesian product form and be generated by
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an ordered-state automaton. Indeed, this is the automaton, one would.:,

expect to find in the subject's responses if Jle becomea an OSA, .. A state

diagram for such an automaton,0, appears in Figure 3.

Insert Figure 3 about here

Although we have shown that no ordered-state finite automaton

responds correctly to J, it is still possible that in some sense an

OSA might respond correctly to J in the limit, with probability

arbitrarily close to 1, so in practice we could not rule out such a

machine. To investigate this possibility, we make the following:

DEFINITION: The probabilistic response r of the finite automaton

--is a set of random variables r(s) for each state s of %I, taking

values in 2E. The automaton, response-pair (M,r), responds correctly

up to c to a language L (for C > 0) if

(1) Pr(r(s0) = n(A)) > 1 - e,

and for all x E 4(0 - {Al,

(2) M(s
0'

x) exists and Pr(r(M(s
0'

x)) = n(x)) > 1 - e.

DEFINITION: Let (9l.,r.1), i = 1,2,..., be a sequence of pairs of

finite automata and probabilistic responses for the automata. We say

the sequence can respond correctly with probability to L if, for

all 6 > 0, there is an integer N (depending on C) such that (,rN)

responds correctly up to e to L.

In this last definition we could have made an even stronger condition,

namely, we could have required some kind of convergence, that is, in

some sense, later automata in the sequence get closer to responding

correctly. This would be in line with the usual convergence to

22-



Fig. 3. State - diagram for an ordered-state finite automaton ).1 .
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probability 1 definitions. But we have stayed with this weaker condition,

because as we shall see now, ordered-state automata cannot even meet the

weak condition.

THEOREM: There is no sequence 01,0 of automaton, response pairs (91.,r.)

whereeach91.is an ordered-state automaton such that 01,r) can respond

correctly with probability 1 to J.

Proof: Suppose (UM is such a sequence. Pick e < 2 and let (al ,r
i

)

respond correctly up to e to J. The proof is similar to that for

the deterministic theorem. For this automaton, response-pair, since the

automaton responds correctly to J, M(s0,NT) = s2 exists, and

Pr(r(s
2
) = n(NT)) > 1 - 6 > 4 .

Since
i

is an OSA, by the saMe-argument as in,the,lasttheorem,

M(s ,IT)
0

= s2, and thus

Pr(r(s2) = n(IT)) > 1 - e > 4.

But inspection of J reveals that

n(NT) = {NJ} and n(IT) = . Therefore,

Pr(r(s2) = jN,I }) > i and Pr(r(s2) = {N} , which is a

contradiction, and the theorem is proved.

This last theorem is rather strong in regard to the capabilities of

ordered-state finite automata. No matter how we might try to approach

J with an OSA, changing both the automaton and the response distribution,

there is no chance of coming close to responding correctly to J.

If the subject does learn, though, that is, if he responds correctly

at asymptote, are we forced to conclude that he is a finite automaton of

the non-ordered-state type, such asp Somehow we would like to find

an automaton that preserved the ordered-state property while using the

- 24 -



past appropriately. These properties canbe found ,In an appropriate push-

down store (PDS) automaton(f-irst called:so by Newell,_ Shaw andSimon,

1959). Two mathematical treatmentswhiCiLdiffer slightly, Maybe found

in Chomsky (1963) and .Ginsburg (1966).. However,twe do not neec anything

like the full powerof:the PDS automata. We arenOt.introducing the PDS

to obtain more generative power, since. the finite,automata are strong

enough in this respect; rather we introduce PDS automata in order to

!obtain different kinds of structure. In particular, we will not need

the PDS ability to erase from memory; Whatme have is the same structure

of a' special case of what Chomsky called a"transducer," but we do not

consider the machine as a mappingfrom inputs into memory strings.as a

transducer does. The essential structure is the'same,' becauSe neither

a transducer nor our machine allows erasures, and thus, neither allows

:past memory tcy.be inspected by,thamachine. Forlour:purposes we only

need -one element in memory at any given time, and this again is different

from.a-general PDS: Our machine is also deterministic. -.As far as we:;1

know,an automaton exactly like ours has not been defined in the

literature. As far as possiblewe will try to make our definition a.

special case of Ginsburg's (1966, p...59). Thisi however, is not completely

poesible.because,'for the-same.reasons we gave for the finite automaton

definition, we want the transition function to be defined on only a

subset of the appropriateCartesian product, whereas Ginsburg define-s%

the function on the:full set. Nevertheless, these notions can be defined

in a manner. similar to that for finite automata.

DEFINITION: A structure :91 .(A,E,P,M,z
0'

s
0
,F,e) is a -memory store

(1-MS) if and only if
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(1) k is.a nonempty finite set:(states),-

(2). is a nOnempty'finite.set (inputs),

(3) r is a nomempty.finite,set XtemorY,,e'lerrients)',,

(4) M is-a:function from a subset of :ix E x 07*)) to

-1%..x,(rUEel) Otis the transition table) such that

a): if 11(s,a,m) exists, then .m(s,a011) if and

only if m =.e

b) if M(s,a,e,) . exists then there:is:nO- r Auchythat

M(sic,,m) exists (the deterministic condition),'

(5)' z0 is an element of r(zo is thestart push-down symbol),

(6) s
0 v

is-An A(s0 is the start state),

(7) F is'a subset of.AV.(F is: the set of final states),

(8) e is not.in,r (e is the empty memory element).

Actually there is little difference between the foregoing definition and

the usual PDS definition. What makes pur machine a %-memory store". is

the manner in which it_moves.: The way we conceive of.thel-MS.as moving

is the following. The machine is in a.state,,has one memory element:at

that time,.receives an input, and. as a: result,of those three properties,

switches to another state, and changes the.memory element to-another one.

In order to realize this process we-,define the following,function-

fromasubset of AXE xr to Axr.
-

DEFINITION: Let a
1

...
k

*
be a string in 2-, and let s in A and

m in r. MI(s
'

a .0'
k'

m) is said to exist if there is .a sequence of

states in A, sk, where si = s, and a sequence of memory elements

in r,
ml'''''mk+11

and mi.= m, such that for i k, either

(1) (s
1+1 1

,m.
+1

) = M(s
i
,a.,m.) exists, or

(2) (st+1,e) = M(sioai,e) exists akd mi
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When De(s,(71...ak,m) exists, it is defined as (
-sk+1'mk4-1).

We have defined the function as M1 instead of M, inasmuch as it is not

quite an extension of M, because when k = 1 we. have M(s,a
1
,m)' M "(s,a1,m)

when M(s,a
1
,e) exists. Since it will not cause confusion, from now on

we will call this function M instead of MI.

Now we can see what e does in the definition of a 1-memory store.

When a transition M(s,d,e) = (sI, ) exists, it means-that when a 1-MS

is in state s, has memory element m, and receives input a, it switches

to state s' and leaves the memory element unchanged. Of course, given

our definition of a 1-MS, we could have accomplished the same result by

writing out such a rule for each memory element. But there are structural

reasons for not doing this. In our discussion of J we will see that

the subject operates sometimes as if he is ignoring what is in memory.

The determInistic Condition insures that the 1.45 is never confused and

has at most one rule to follow. This condition is siMilar to-a-condition

in Ginsburg's (1966, p. 74) definition of a deterministic push-down

automaton, but it does not make Ginsburg's assumption that It is always

possible to make a next move.

DEFINITION: A string x of E*. is accepted by a if and only

if M(eU ,x,i_)- exists and in F. The language T(9.0 generated by
1.1

111 is the set of all strings accepted- by

It is easy to show that the class of languages generated by 1-memory

stores is equal to the class Of langUagas generated by finite automata.

In general we need fewer states for a 1-memory store than for the

equivalent finite automaton. For any finite automaton we can find an

equivalent 1 -MS with the same number of etates simply by adding a memory
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element which has no effect. In general, however, we can find an equiv-

alent 1 -MS with fewer states.

We now have to make our special definitions for madeling our

experiment just as we did for finite automata. The definitions will be

just like those for finite automata except that, of course, the memory

element has to play its natural role.

DEFINITION: The response r of the 1-MS 9I is a function from

A X r to 2
/-]

such that for s in A and m in r,

such that there is an sl in A and an m' in ro63
. r

such that M(s,a,m) = (4m1) or M(s,a,e) = ,m )J .

We see here another reason why our deterministic condition is necessary,

namely, to insure that the response of 91 is not ambiguous.

DEFINITION: Let al be a 1-MB and L be a language. We say that W

responds correctly to L if (letting r be the response of 91, and

n be the next-word function of L),

(1) r(s
0'

z
0
) = n(A),

and for all x E AL) - {A)),

(2) M(s
0' '

x z
0

) exists and r(M(s
0
,x,z

0
)) = n(x) .

DEFINITION: A 1-NM is an ordered-state 1-memory store if for all s.
1

in A, a and ak in E and m and m in ru'e), if M(s.,a.,m )
, i P ..

1 -J P

and M(s
i
,U

k. '

m
CI

) exist, then they are equal.-- --
A state diagram for a 1-MS :.:12 appears7tn:Figdre A. Avtriple :labeling

Insert Figure 4 about here

a directed line between two states has the obvious interpretation. That

(a,m,m )
is, suppose Then M(s.,a,m) = (s.,m ). The 1-MS is

28.
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defined as IP. (A,E,F,M,z0,s0,F,e) where A = fsi,1 5 i 5 6},

E {N,I,T,W,D}, r = .10,1,x1
ol'

F =
6

and M is defined by the state-
,

diagram in Figure 4.
V

A simple calculation shows that TA = J and that .",59 responds

correctly to J. It is also clear that .16 has ordered states. So,

unlike the finite automaton case, we have found an ordered state 1-MS

that responds correctly to J. What is essential here is the memory

which keeps track of whether an I has yet appeared; it becomes 1 if

it has, and 0 if it has not. Therefore the states do not have to keep

track of this important history; all they do is count the number of past

inputs (i.e., keep track of time).

Now that we have found two different kinds of automata that respond

correctly to J, can we tell which is a better model of the subject?

Since and .1° both accept exactly the same language and both respond

correctly to J, there is no discrimination possible here. If subjects

become either one of the two automata, they will'learn, and so we can

distinguish them on this basis. Yet , and .1° are different;. that

is, their structures are different. How can we .decide which of the two

models is a better one to describe subjects?

This is one of the major questions of our study. The solution to

such a question in linguistics usually would be based on introspection,

that is, an attempt to decide which model describes mental structure best

on the basis of feel. Our point is not to argue with that method, which

often is the only one available, but to show in a small example how other

kinds of data might be available. In our case, that other kind of data

involves learning. If the structures of the two automata are different,
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very likely this structural difference .isreflected in the details of-

learning, even if. both automata predict learning at asymptote.

1,4 order to make predictions about;learning,we must make some

assumptions about the course,of learning, but our. ssumptions will be
.

reasonably, weak (though they may be wrong) and fairly general It

would not be easy to fit a model well to this relatively, complex

experiment; that is not our,goal4 fact, our assumptions will not be- -

strong enough to predict any of the statistics of learning.

A'reasonable'model for how a subject may-become a fin'.te automaton

(and learns to respond correctly in the experiment) is the folloWing.

After each input the subject is in the correct state. That is, even

though he may not have had the appropriate transition funCtion to get

to that state, when the input comes in it switches him to that state.

This is important because then the subject will have a chance to learn

-
which inputs may be accepted in that state, that is, what the correct

response to that state is.

When a subject is in a state and an input comes in, we assume that

the subject to some extent learns that that input is part of the correct

response to the state. We do this by assuming that there is an.increment

in the probability that the subject will include the input in his response

to that state. We need the following:

DEFINITION: A pair (s,c) for s in A and in E (for a finite

automaton 91) appears in a string x in e if there are strings

,*,
and z in id such that x = yaz and M(s ,y) = s.

0

DEFINITION: Let 21 be a finite automaton. For each s in A, the

learner's response to is a random variable R(s) taking vaities in



DEFINITIONt A'presentatiOn schedUle is a segue/1de xi,... Xi,.

stringsinE'.x.-is presented on'trial i A pair (g;d) is

preg6nted ori if (s,ø) -appearS'in xi The learning sequence

for a state` is 'a thequeii6e'di-'leatrier's'restions66 to'
' V

Let be a-ihriciion frdi'10';AFto [CO] :SuCh-thai

x < 1 -and
"f(1),:' i'..

'Assiithption: 'For'd finite-autdMatOn 21; letting Pi(S,a)"= Pr(ar''ER;!(S)),

we assume

f(pi(s,(7)) if.;-(s,a );,,was presented,ontrial, i

P. (q,6) =
"Otherwise:.

In other words, if the state and next input were presented on the trial,

the subject increases. his probability of making the appropriate response.

Otherwise he leaves the probability unchanged. If we assume that the

initial probability of including an input in a response is 0, then no
ni

wrong input will ever be included in a response, and the subject's only

problem will be to learn the correct responses. This assumption of the

f function is rather general and leaves room for a variety of models,

including linear and n-state Markov models. However, the assumption
,

does preclude forgetting, but forgetting could have been included by

introducing a forgetting function. The predictions we make would then

have turned out in a sense even stronger, and there is no reason to

introduce this extra complexity.

The predictions we make from this assmption are applied to the
fl.

i)
finite automaton (Figure 1). The first prediction involves the

.- ' , .;:-..,',.1..,. ::. : .: -:-.0!!":Iiiii--.1Hf".1.

inputs T and W. We just consider T here, because the derivation

for W is the same. The above considerations lead to the conclusion
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that, if before trial i + j + 1, letting ..L ..:4(s1) be the number of

presentations o

of (s2T), then

Pr(T E R(s

(s1,T) an -..4(s2) be the number of presentations

) = Pr(TER(s =

In other words, the number of appearances of T does, not count when

they.bring,the:automaton to state s2 instesd'of Nsi.,TheLsame.kind

of prediction may PP made with W replacing. T. The prediction is not

made for D, because in D only appears with state

predictions maybe tested statistically in a number of,ways, and there

is no need to discuss them here, since they are discussed in Section V.

Essentially the prediction say that there are two kinds,of trials on

which T appears and that learning T on one does not help on, the_

other.

A variant of this prediction involves comparing learning on, say,

the response for the second and thirdjnputs. In the experiment the

probabilities,of presenting each of thethree sentences of J are

Pr(NTNWID) =

Pr(NTIWND) = t,

Pr(ITNWND) = g.

Our assumption lead6 to,the prediction that after i presentatiOns of

(s,a), p(s,q),=_fi(0), where the notation fi means function composition

of f, i times. So if there are. t trials in all,

*19f
Pr(M.E R(s

0
)) = :I

t
(0) = Pr(T E R(s

1
)), and

- .

Pr(I E R(s0)) = (0) = Pr(T E R(s
2
)).

-33 -
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One way of interpreting these equations is that the rate of learning

for the response predicting the second input should equal that for the

response predicting the first input. We test this in our experiment.

By now clearly something general is going on, There is something

about the finite automaton model that does not let the same inputs

become connected in the appropriate way. Certainly -if T appears in

the second position in two different sentences it'should be learned'

f aster; that is, both kinds of learning events shoUld.heip each other.

The empirical l-reaulti bear this out:

In order to look` at the same predictions for a 1-memory store

model we need the

DEFINITION: Lei W be a F6i'each in A and m in T qe),

the learner's respOnse to (s,m) is'a-randoM variable R(S,n) taking

values in 2E. A triple (s,a,m), where m. e, appears in a string

*
x in E. if there are strings y and in lE auch'that = yaz

and
' '

M(S0- 3i'Z
0
) = (s,m). 'We say (s,C,e) aPpears in if =' yCz

and there is an' m .in 1-- such that M(s , )-= (s,m) and M(s,a,e)
'

exists.

Other definitions are just as before; making the appropriate new

definition of "appears."

Assumption:For a 1 -MS = Pr(a, E Ri(s,m)) we

assume
f(pi(s,d;M)) if (s,C,m) was presented 'on

P (s,C,m)

P
i
(s,a,m), otherwise .

The 1 -MS determines the next response using the current state and memory

element, and learns in this manner also. What is especially important

for us is that it can determine the next response by using e and



ignoring memory completely. Thus, when it is ready to accept. T, the

1-16 ignores the fact that there is a.1 or a 0 in memory, that is, that

the past history is different, and thus, can let each presentation of.

T help in learning T as one response. This is exactly what the

finite automaton model cannot do, as we saw previously. To.see the

result for the 1-MS model, we consider the cases when the finite

automaton .is in s
1

or s
2'

that is, when an N or I starts the

sequence, respectively. Suppose i sequences start with N and j

with I, as before. Then by our learning assumption, for the 1-MS

(Figure 4), noting that (s1,T,e) is presented on all of these trials,

we have

Pr(T E R(si,e)) = fi+j(0).

We see that contrary to the result for finite automata, all trials have

an effect on the learning of the single T response. This result was

found to hold in the experiment and thus helped to suggest that ,/h is

a more appropriate model than ft.

In contrast to the set of equations (1), the 1 -MS model predicts

Pr(N E R(s
0
,z
0
)) =

t
(0)

Pr(I E R(s
0
,z
0
)) = f141)4 t (0)-

Pr(T E R(si:,e)) = f
t
(0). (2);

The first two equations of the set are the same as in (1). But the

last one is different from the second two of (1). Equation (2) predicts

faster learning for T than for the first response set, in contrast to

Equation (1) which predicts equivalent learning. The results bear out

the prediction of Equation (2), and the 1 -MS model agrees better with

data once again.
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The essential property of that allows us to make these predictions

is its ordered-states that can tie together two identical inputs

occurring from the same state, but with different histories. The finite

automaton cannot do this.

Perhaps a general word is in order. There is a certain sense in

saying that part of what we are studying is the psychological process

known as "generalization." For example, the 1-memory store model

predicts that a subject generalizes from a T with one history to.a.

T with another history and says that in a certain sense they are the

same. This generalization takes place over time, but relative time,

that is, relative to the place of the word in a sequence, since the

two appearances of T are very different in absolute time. The point

I am trying to make is that any study of generalization demands a

structural model of some kind. Traditional generalization studies have

been done in areas where the generalization operated over a simple

structure, namely, one continuous dimension-such as the frequency, of a

tone. There is no simple, 1-parameter way of characterizing the

generalization in our experiment. One has to deal with structure and

to work with a model of generalization over,that structure. Our guess

is that once structures have been worked out in a particular area, the

generalization model will prove to be a natural one for that structure.

In relating our theoretical results to the broader question of

syntax learning, we find the notions of "paradigmatic" and "syntagmatic"

(e.g., Ervine-Tripp, 1961). Paradigmatic responses are mutually

substitutable in a frame. Syntagmatic responses occur next to each

other. In response 1, we might say N and I are paradigmatic responses,



because either one can occur there. But it is important to realize that,

say, I and N in response 3 are not paradigmatic in the same sense.

That is, although both can occur in position 3, they are not mutually

substitutable, because which one can appear depends on the history of

the string. Essentially, paradigMatic responses are responses that fill

the same slot in an ordered-state finite automaton. We can generalize

thiS'ncition by saying that paradigmatic responsesfill the same slot in

an ordered-state 1-memory store.

I end this section by presenting A-summary of our prediCtions;

Figure 5 thoWtvhat results lead to what conclusions.

Insert Figure 5 about here
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J learned

T (and W) learned
independently
after N and I

T (and W) learned
on all trials

Subject becomes
finite automation

Subject becomes
I- memory store

not learned

Subject becomes
ordered state
finite automation

Fig. 5. Diagram of conclusions to be drawn from
various experimental results.
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III. Syntaetic-and Semantic Models

The purpose of this section is to provide another rationale for
. -

choosing the kind of system we studied. We discuss a linguistic model

which has things to say both about syntax and semantics in natural

language and which shows how our miniature system seems to capture some

essential properties of that model.

The, model was, proposed first by Chomsky (1965). We do not discuss

the details of how it applies to natural language. Although by

presenting the theory in the way we, do, we might have a tendency to

caricaturize it, the essential ideas should be represented adquately.

proposal is that all natural languages take somethingChomsky°

like the following form. There is a single, universal syntactic base

which, except for lexical entries, is mostly context-free. This base

. is universal in the sense that all languages have the same base. The

context7free base:operates first, and then the context-sensitive lexicon
. g.:

rules. The lexical rules (which insert words) of course are specific to

each language. At this point we have a collection of phrase-markers. The

transformational rules now operate on these phrase-markers, changing the

phrase-markers and at the same time the terminal sentences. The trans-
' .1Ev

formational rules are specific to each language and are what cause the

syntax of different languages to be different. One more assumption

(originally proposed. by Katz and Postal, 1964) is that transformations

do not alter semantics. That is, the meaning of a transformationally'

derived sentence is not different from the meaning of the sentence it

was derived from. Chomsky argues that all semantic interpretation is
...r
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done on the base., This conception of grammar has recently been challenged

by a number Of linguists, for example, Lakoff and Ross (1967), who claim

that, instead of a base generating syntax with a semantic interpretation,

the base should directly generate semantics. SyntaCtid'iranSfOrMatidni

would be defined to operate on the'outpUt of a seiantio'brkse. Thiview
; , .

is known as "generative semantics" as opposed to generative syntakc

However, only the barest suggestion of formal work has been' done' frOil

this point of view, for the reason that the prObleM'of semantics 'rep-

resentation is almost completely unsolved for natural language'. It is

not clear how this approach would change the way in which We repretent

our arithmetic example, and we will ignore it from now on.

We looked for a small domain on which we could experiment that

would have as many essential properties of the above system as possible,

while holding down the non-crucial complexity as much as possible. This

turned us to arithmetic. Arithmetic is taught in almost all, if not all,

countries where there is any kind of formal education. It AS a Simple

system which, it turns out, can be cast in a form with-just the

properties required by this theory. We are talking here about spoken

arithmetic, that is, sentences which might be said in a ClaaSkodm-When

a teacher is teaching a child arithmetic. It is not-true that iPoken'

arithmetic is the same from country to country. The qUestionaare-Aaked

in a language, and languages differ. We looked at French, GerMan, and

Russian, but in simple arithmetic sentences we did not find midi more

than different lexical items. That is, there is a function f from V1

to V
2

where V
1

is the relevant vocabulary of language 1 and V
2

is

the relevant vocabulary of language 2 such that if v
1.

..v is a
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sentence of language 1, then f(vi).. f(v
n

) is a sentence of language

2, and the two sentences mean the same, .that is, their answersare the

same. This is not true for these three languages in general, but it is

roughly true for the small arithmetic domain we examined. Of course, f

is the usual translation function. However, Japanese provided some

differences in syntax, and so we settled upon that language.

What is important is that thebase of arithmetic is universal across

cultures. The part of arithmetic that. does not depend on language is

universal or almost universal. SpecifiCally, an equation like "2 + 3 = 5"

is almost universal in classrooms throughout the world. Even the so-

called "Polish" notation in which the above equation would be written as

= + 235" is not used in school classrooms, as far as we know.

Of course, the question, "What does 2 plus 3 equal?" is not universal,

but is specific to English. This sentence can be described via a trans-

formation from an underlying sentence such as "x = 2 3," which may be

an equation in the universal base. The system we propose for arithmetic,

in other words, has an underlying context-free base which is roughly

universal and generates arithmetic equations. Transformations then

operate on this arithmetic base to yield sentences in a specific language.

The transformations are specific to each language and thus have to be

written for each language. The base, on the other hand, must be constant.

This model can be worked out in practice. We take as our base the

rules in Table 1. The notation is standard linguistic notation. Set

Insert Table 1 about here

brackets mean to choose exactly one element inside the brackets.

.4



TABLE

Syntactic Base for Arithmetic. The'Rules are Ordered'

and may Apply Any Number of Tithes..

= N

O
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represents yes-no questions, Qwh represents what questions, and C

represents commands.- There is .a question, of course, .about what, a, base

for arithmetic should contain. 'We do,not.claim that there is:any.

particular reason to pick our base over one slightly different. Our

point is that the model can:be:applied, not that we have found:the

correct. solution:or even that there is a correct solution. The whole

problem of evaluation procedures for grammars could be brought,-up here,-

but it.would serve no useful purpose.

The base is context-free, as the model requires. Note that it

generates many non-true sentences, but it is set.up.to generate all well-

formed sentences, not all true ones. The base generates well-formed

sentences for the first 6 (0-5) integers, which are, the ones..we used.

the experiment. It could be modified-for,any :finite number, or a

separate system could be written to generate all the integers.

A more difficult task is to write the transformational rules for a.

given language. One problem is how much to include, since there are

many ways of asking arithmetic questions or giving commands:. n, say,

English. We have, fairly arbitrarily, selected some of the more

prominent sentences to generate. Once again, the goal has been to

demonstrate that the model is applicable, not to yield any kind of

complete solution.

Appendix I contains a sketch of the transformational rules for

English arithmetic and Japanese arithmetic. Notation is the standard

one used in transformational theory (see, for example, Chomsky and

Miller, 1963). The sentences; generated by. the Japanese grammar were

obtained from a Japanese informant, who was told to judge sentences on



whether they,were likely to be heard in an elementary-school 'class.-:

Others have-written a grammar using the same base and same ,form'of

transformation's for GerMan'arithmetic and, partially;' for Russian

arithMetic.

So faruWe-haVe seen how the syntactic properties of the linguistic

model we are disbuesing can beAmcorporated in'the arithmetic

What Can'we say,abOut'semantits? The' semantics of the simple arithMetic

we are discussing is well understood. The'semantic model isIthe-truth.:.-

model for arithmetic. There are two kinds of base sentences those that

contain an x (variable) and those that-dooti These twolcindsof

sentences:have-differentsemantiC interpretations, analagous-in-English

generally to "what" questionS,onthe one hand.ancU"yes,ne questions!On

the other. We define the meanineof a base sentence in the following

way. Let L(B) be the set of all terminal strings generated by the

base. The meaning is a function, from' L(B) into-the-set of:subsets

of positi-ve and negative integerS '21, plus the values T and- P.(for--

true and false), that is

meeting the following

r
A:L(B) 21 UtT,Fs ,

conditions. Let s be in 14(B). Then,

(1) if s = Q4 for some E, then if E contains an x, A(s) =

and if E does not contain an x, A(s) = T if

and A(s) = F if E is false.

is true,

( ) if s = Q
w
E for some E, then if E does not contain an x,

If E contains an x,

A(s) = rational numbers i such that s is true when i is

1substituted for x in
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(3) if s = CE, then if E contains an x, A(s) = O, and if, E

:does not contain an. x,

A(s) = ..(the rational number _such that . y,= E is true)..:

The meaning of certain terminal strings is'empty. For example, whenthe

sentence is yes, no and there.is a variable in the sentence, we consider

the meaning.empty because there is no reasonable answer to, such ,a question,

unless the, value of the variable has been specified. We are not

considering such processes.here, though in principle we could.. It

would involve some linguistic processes not well understood, namely,

meaning relations across sentences.

We can paraphrase the ,three conditions above. Assuming that the

proper variable condition holds, we see that the meaning of a yesno

sentence is simply its truth value. The meaning of a "what" question.

is the set of values that make it true, that is, its answers. If there

is exactly one x in then A(s) will contain exactly one integer.

If there is more than one x. in s, then A(s) may contain different

numbers of elements. For example, A(Qwh3 x = x) = O., the .empty set,

because there is no value of x which makes this sentence true. On the

other hand, A(Qwh x x = 8) = (4}, and A(Qvi 0 = x) = I, the set of

all integers, The meaning of a command is simply the number obtained by

carrying out the operations in the sentence.

Now that we, have defined the semantics of the set of base sentences,

we can define the meaning of any sentence in the language, that is, we

extend A to be a function on T(B), .the language generated by .the base

together with the. transformations. If, ,s E L(B), we let the transformational

rules apply,to s and obtain the sentence T(s). Let T
71

:T(B) -+ L(B) be
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the function euch that if a' E T(B) and T1(a ) = s, then T(s) = s'.

Our statement that T
1

is a function requires that T be a one-to-one

function, that is, the transofrmational rules may not take more than one

base sentence into a given surface sentence (a surface sentence'ls one

`on which the transformations have operated). This is the case with 'our

transformations, and for simplicity, we make this one-one assumption'

here. However, the assumption is not necessary; instead we could have'

let T
I
:T(B) -4 2

L(B)
. In this case we would have (semantically)'

ambiguous sentences, as we will soon see.

Now we can define the meaning of any sentence. Let s E T(B).

Then we define A
1

(s) = A(T (s)). That is, we extend A to a function

on T(B) by taking the meaning of a non -base sentence to be the meaning

of the base sentence from which it was derived; We have 'captured here:.

the semantics assumptions of the linguistic model. The meaning-is in

the base, and transforMations do not change meaning For-examplei

A(Qwh2 = x) = [5. Applying' English transformatiOns to this 'base

sentence yields "What is two plus three?" By our definitiOn, JA (what:is

two plus three) = 5. Returning to A point we made earlier; T were

not one-one 'and we had defined T
.1

more generally as me 'suggested':

earlier, we could have generalized-Ai defining it, in essenCe; as.the

set of meanings of the sentences which transformationally map intolt.

Thus semantic ambiguity. A sentence has more than One' meaning

*Alen it is derivable transformationally from more than one base'sentenCe.

Perhaps we may say a word more about the semantics groups in Out

experiment. We suggested in Section I that semantics might helP syntaX

learning by restricting the possible structures. In the experimental
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language. J, the sentences have only one answer, and this restricts the

possibilities, given the base, of their syntax. For example, it is

unlikely that a sentence would contain "ikutsu" twice and a number only

once, because only rarely would such a sentence have exactly one answer.

A possible model of what a subject is doing when he is trying to learn

semantics in our experiment is that he is looking for the base string

which transformationally maps into the sentence he is examining. Since

he knows the semantics of the base string (we assume this; surely it is

true for oar subjects' knowledge of arithmetic), if he can find the base

string, he will know the semantics of the surface string. Now, since

meaning does not change when transformations are applied, any essential

meaning-bearing elements in the base sentence will have to be represented

somehow in the surface sentence, or else the meaning will change. For

example, if the base sentence contains two numerals, then these numerals,

perhaps in some transformed form, must appear in the surface sentence.

Therefore, practice on semantics might lead the subject to realize that

the strings all have two numerals, and this would tell him something

about the syntax which would help him in responses three and five. Thus,

if an ikutsu has already appeared, then the third word must be a numeral.

Similarly, semantic considerations say something about the fifth word.

That is, semantics restricts only words three and five. So it is on

these responses that the restriction-of-structures model of semantics

predicts that subjects will learn faster.

The main point of this section has been to provide a rationale for

studying spoken arithmetic. The miniature system we studied seems to

capture many of the essential properties of the linguistic model. Perhaps
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by studying the learning of the miniature system we will increase our

understanding of the learning of natural languages.
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IV. Experimental Method

Outline of Experiment

Briefly, the experiment had the following form. Part I consisted

of pre training on the four function words, so subjects could learn to

recognize the words in sentences and also so they could be trained to

respond with the first letter of the word where appropriate in Part III.

Part II was paired-associate learning of the six Japanese numeralafrOm

0 to 5. This was necessary so that the semantics group could learn the

semantics of the sentences in Part III. As a control, the non-semantics

groups also learned the numerals. This part further allowed the subjects

to learn the numerals so they could respond N where appropriate in

Part III. Part III presented the sentences slowly one word at a time,

and the subjects tried to learn which word or words could come next.

The sentence was repeated quickly. The semantics group tried to write

the answer, and then saw the correct answer. In case gross differences

existed between the semantics and non-semantics groups, three non-

semantics groups were run to see if we could pin-point the factor

causing that difference. None of the non-semantics groups saw or

attempted to give the correct answers. One sub-group did nothing while

the semantics group wrote and saw the answers. However, if this group

did worse than the semantics group on all the responses of the syntax

learning, it might be argued that this was due to a lack of practice in

general. The semantics group might have spent more time on a task

related to and concerning the same sentences as the syntactic task.

Therefore a second sub-group was run which, in the time that the semantics

group was writing and seeing the answers, had the task of writing down
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in order the first letters of the sentence they had just heard repeated

quickly. This gave them direct practice on the syntax in an attempt to

overcome the stated objection. Both sub-groups were told, as was the

semantics group, the basic algebraic nature of the sentences. nis

might make a crucial difference, and might in fact be the effect of

semantics. This is, knowing the algebraic nature of the sentences

would very likely aid syntax learning. Therefore, a third sub-group

was run which was not told the forms of the underlying equations. This

group like the first sub-group received no task during the period that

the semantics group was answering. We would expect that this group

would do worst on syntax learning. Part IV of the experiment presented

various sentences, half of them drawn from Part III sentences, and the

other half drawn from sentences containing "ikutsu" twice or, in a few

instances, sentences ungrammatical in other ways. The subjects task

was to answer 1 for grammatical and 0 for ungrammatical. Then the

correct (0 or 1) answer appeared.

Speaker. The speaker was a native Japanese graduate student at

Stanford University, who had left Japan for the first time two years

before the experiment.

Presentation. The entire sequence of material for the experiment

was recorded on videotape and shown to the subjects on closed-circuit

television. The only things to appear on the screen were the Japanese

speaker and, where appropriate, an integer, e.g., "2." Whenever we

refer to "the subject heard" or "the subject saw" or "an integer appeared,"

we mean with respect to the television screen. When we say an integer

appeared on the screen, we always mean in numerical form, e.g., "2,"

not "two" or "ni."
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Sub'ects. Seventy-three subjects were recruited from the Stanford

student placement service. Most of them were either students in summer

school or students during the regular academic year. The subjects were

run in groups of six to thirteen. All subjects run together were run on

the same condition, i.e., either they were in the semantics group or the

same non-semantics sub-group.

Procedure. The four parts of the experiment were run sequentially,

with each subject participating in all four parts. The entire experiment

lasted less than an hour and a half. There was no delay between parts

except an interval of less than a minute to collect the subjects'

response sheets. Instructions for each part were read at the beginning

of that part. Questions were answered, and then the television

immediately came on with the beginning of the stimuli for that part.

Before the Part I instructions, there were brief instructions informing

the subject that this was an experinent in language learning.

Part I - Word Pretraining

Materials were the four Japanese words "ikutsu," "wa," "tasu," and

"desuka." The words were spoken five times each, one at a time, for a

total of 20 words. There were 3 seconds between each word. The subject

was given a sheet of paper with 20 spaces and was told to write the first

letter of the word (I,W,T or D), (The words had been read to him in the

instructions.) There was no feedback on this part.

Part II - Numeral Pretraining

Materials. The first six Japanese numerals.

zero - 0
ichi - 1
ni - 2
san - 3
shi - 4
go - 5
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Instructions. The subjects were told the speaker would say a

Japanese number and that they were to learn the English translation.

They were to write their answers on a provided sheet of paper and to

guess if they did not know the correct answers. '.'They were told the

correct answer would appear in numerical form after the period in which

they were to write the answer, and they were to write the answer before

the correct answer appeared..

Procedure. The numerals were spoken in. Japanese by the speaker.

An item went like this. A Japanese numeral was spoken. During a 3i-

second response interval the subject was to write his response. Then

the correct answer (translation) an integer in numerical form, appeated

on the lower right-hand of the screen for 2 seconds. The next Japanese

numeral was spoken. An example of a trial on the numeral 3 is

speaker says "san" -- a 32-second pause while subject writes down

his answer --

"3" appears on screen for 2 seconds -- next item.

There were 10 trials on each of the numerals for a total of 60 items.

The numerals were presented in trials with no break between trials.

That is, the six numerals were presented randomly, then re-randomized

and presented again; this process was repeated to give 10 trials. The

only constraint on the randomization was that a numeral could not appear

two times in a row, that is, the same numeral could not end one trial

and begin the next.

Part III - Sentence Learning

Materials. The sentences used were of the following three forms

ikutsu tasu N wa N desuka,
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N testi ikutsu A.7a -N suite ,

testi N wa';ikutsu (lc! 3uka ,

where N stands for anyJapanese'numeral .frow0 >to :5. :(Differept.N!,s

in the same:sentence were hotnecessarily: theJsamenumerali. f course.)

A-N4ay to interpret these sentences is.; : to translateH "ikutsu" as "what 9 "

"tasu";as !!plus;'! and:"wa" as equalsi." so that thecfirst:.sentencecis.:

"What plus W.:equals N4"' the,,.second "N and-, the

third; "N. ,p lus N equals:: what?" When we speak of the correct answer to

any of: these sentences, it was.-obtained by-finding the correct: answer,

to the translated sentence. For example recalling, that Isa I 11311

and "go" =, nw in the. sentence: "san tasu ikutsu was go,desuka, we know

the correct answer is "2." According to ourJapanese speaker, these

sentences would be spoken in An elementary-school arithmetic class.,

Half 'of theSentences were chosen from the third form shown above

(ie. NTNWID), and the other half was divided: between the other, two

forms. Note that the third form demanded that the subject add to get

the correct ' answer, and the other two forms demanded that he subtract.

Thus, by any constant guessing scheme, if the subjects did nothing but

add or subtract the two numbers, the semantics group would be correct

half, of the time. 2i

'Altogether 72 sentences were presented. Using the integers 0-5 we

had 6 X 6' 36 sentences of the form NTNWID. Since we did not want any

answer greater than 9 we eliminated the sentence with two to give

35- sentences. Then we repeated one sentence to provide 36 sentences

for this form. If we look at the form ITNWND, there are only 21- pos-

sibilities. because to assure a positive answer, the -second N has to

be greater than or equal to the first N. We picked 18 of these 21
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point only one word would actually be said in a sentence, but the

patterns were such that sometimes another word could have been said.)

The subjects made their predictions by writing the first letter of the

word in the appropriate box on the sheet provided if they wanted to

predict ikutsu, wa, tasu, or desuka. If they wanted to predict a numeral,

they did not write the first letter of the number, but wrote N. To

repeat, the subjects were told that they could write either one or two

of the letters I, W, T, D or N at each point.

At this point instructions among groups differed. First, the

semantics group was told that after they finished the above procedure

for a sentence, they would hear exactly the same sentence repeated, but

this time more quickly, at a fairly natural rate. After they heard the

sentence repeated, they were to write the answer to that sentence, a

digit from 0 to 9, in the space provided. If they did not know the

answer, they were to guess. In a few seconds the correct answer would

appear on the screen, and they were to try to learn so that they would

be. correct.

Groups SW and SA were told that the sentence was repeated to help

them learn it. They had no other task before the next sentence started.

Group SW was told the same thing, but had the task of writing the first

letters of the sentence they had just heard in spaces provided for them,

with the digits not N, actually being written.

Procedure. The number of subjects in each group is given in Table

2. The subjects were assigned randomly to groups to the extent possible,

Insert Table 2 about here
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TABLE 2

Number of Subjects in Each Group,

Total

SW SW SA S S Total

13 13 13 39 34 73
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given the times that they could appear for the experiment, which was run

in groups of 6 to 13 subjects. Each group was provided with paper

marked for the responses they were instructed to make. For example,

none of the S groups had room for numerical answers to the sentences.

The spaces for the predictions for the next possible words contained,

for each position, a box with a comma in the middle so that subjects

could put in either one or two responses.

A trial started by a tone sounding. The subjects were given 4

seconds to make their predictions of the first word of the sentence.

Then the first word of the sentence appeared (i.e., it was said by the

speaker on the screen). Again the subjects were given a 4-second pause

to write their predictions for the second word. The second word was

said, and so on, until the end of the sentence. After the sentence

was finished there was a 2-second pause, and then the sentence was

repeated by the speaker, but this time at a normal rate of speech.

For the semantics group (S) there was now a second pause of 4 seconds,

during which the subjects wrote the answer (a digit from 0 to 9) to the

sentence they had just heard. Then the answer appeared on the lower

right of the screen for 2 seconds. After a 1-second pause the tone

sounded to begin the next trial. A diagram for the sequence of events

for the example "san tasu ikutsu wa go desuka" appears in Figure b.

---- - - ---,-----
Insert :Figure 6 about

--
here

Up to the point after the sentence was repeated, the procedure was

the same for the non-semantics groups as for the semantics group. How-

ever, the answer did not appear on the screen for the non-semantics

group, and the subjects did not have the answering task. Exactly the
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tone

Television sounds san tasu ikutsu wa

trial
Comment S1 S2 S3 S4

starts

Subject N,I T N,I W N

Comment R1 R2 R3 R4 R5

Time 4s 4s 4s 4s 4s

Television go desuka san tasu ikutsu 2 tone
wa go desuka sounds

Comment S5 S6 pause sentence correct pause next
repeated faster answer trial

Subject D 2
starts

Comment R6 number
response

Time 4s 2s approx. 2 to 3 4s 2s is

sec.

Figure 6. Diagram for the sequence of events for one trial for Part III,

Group S (semantics) on the sentence "san tasu ikutsu wa go

desuka." The responses given for the subject are those he

would give if he were correct. In the time row, "s" means

"seconds."
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same videotape was used for the non-semantics groups as for the semantics

group, but for the non-semantics group the answer was covered, so that

there would be no difference in presentation between the two groups

except for the appearance of the answer. Thus after the sentence was

repeated, for the non-semantics groups CS groups), there was a pause of

4 seconds (as for the semantics group), plus 2 seconds (the covered

answer was on) plus 1 second (as in the second pause for the semantics

group) for a total pause of 7 seconds. During this time groups SW and

SA had no task. Group SW had to write the sequence of the first letters

of the words in the sentence they had just heard repeated. For example,

if they heard, "san tasu ikutsu wa go desuka" they should have written

"3TIW5D."

The 72 randomized sentences were presented in this fashion. All

the subjects had the same order of presentation of sentences; indeed,

the tape was the same for all subjects.

Part IV - Grammaticality Learning,

Materials. Fifty sentences were used. Twenty-four of them were

"grammatical" (G) and 26 "ungrammatical" (U). (There were supposed to

be 25 of each, but a mistake was made in the recording.) The 24 G

sentences were chosen randomly from the kinds of sentences used in

Part III; 8 of each form were chosen, Of the 26 U sentences, 22 were

selected from Part III, grammatical form, substituting "ikutsu" for

one of the numbers; a typical example might be "ikutsu tasu san wa

ikutsu desuka." These 22 were about equally divided (7, 7 and 8) among

the three kinds of sentences whose original grammatical sentence was

one of the three kinds of Part III sentences. These kinds of ungrammatical

sentences were chosen, because if a subject became the kind of orAered-
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state automaton we discussed in Section II (Figure 3):,he would

consider these sentences grammatical.

The other 4 U sentences were chosen by permuting two words in a

grammatical sentence. The sentences were

ikutsu desuka 1 wa 3 tasu,

0 5 tasu wa ikutsu desuka,

2 ikutsu tasu wa 3 desuka,

ikutsu wa 2 tasu 4 desuka,

The 50 sentences wevi randomized; the only restraint was to present the

4 special U sentences at least 8 sentences apart.

Instructions. The subjects were told that in this part they would

use some of the knowledge they learned in Part III. They were told

they would hear Japanese sentences, and "your job is to determine if

these sentences are exactly like the sentences you heard before in

Part III, That is, could this sentence you hear have been one you heard

before? If yes, write a 1 in the box. If no, write a 0." They were

told the correct answer would then appear on the screen.

Procedure. The 50 sentences were presented randomly as described

above. The subjects were given sheets of paper to write their answers

on. A trial went like this. A sentence was spoken. There was a 3-

second interval during which the subjects were to write their answers

(1 or 0). Then the correct answer (1 or 0) appeared on the lower right

of the screen for 2 seconds. The next sentence was read and the cycle

repeated.
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V. Experimental Results

Part I - Word Pretraining

On Part I, out of a total of 1,460 responses (20 responses X 73

subjects), there were only 11 errors. Clearly the task was extremely

easy, and subjects had no trouble discriminating the words.

Part II - Numeral Pre training

The learning curve for Part II appears in Figure 7.

Insert Figure 7 about here

Clearly an asymptote of no errors has been approached. On the last 3

trials there is a mean number of 2.5 errors per trial out of a total of

73 possible.

Part III - Sentence Learning

Syntax Responses. We cal_ the responses the subjects made in pre-

dicting the next possible words their syntax responses, as opposed to

the semantics responses, which were the number answers for the semantics

group. The form of the data is the following. There were 72 trials for

each subject, and for each trial six words were presented, which we call

the stimuli, and signified, in order of presentation, S1,..., S6. A

subject made a "response" which is blank or a 1- or 2-element subset of

the letters N,I,T,W.D. In fact, all the responses were of this form,

and there were no other letters used by subjects. Further, no subsets of

size greater than 2 were used. (The form of the response sheets helped

to insure this.) For simplicity we will not use set notation, but write,

for a response, e.g., R = I,N instead of R = [IA% The six responses

are labeled R1, R2,..., R6, in the order they were made on a trial.

-



Fig. 7. Learning curve for paired-associate numbers.
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Recall that RI precedes Si. When we count responses of various kinds, if

the response contained two elements, we ignore, as the set notation

implies, the order of the subject's response and count both orders

together, e.g., R3 = I,N means either the third output of the subject

on the trial was I,N or it was N,I.

Let us first look at whether R3 was learned. The relevant figures

are in Table 3. The first row shows the number of subjects in each group,

Insert Table 3 about here

Before we determine whether a subject learned we have to decide if he

followed the instructions. Some subjects never put two responses in the

same box on any of the 72 trials for any of the six responses, that is,

they never made two predictions for the next word. These subjects, of

course, could never have learned by our definition. It seemed reasonable

to decide that these subjects had not understood the instructions and did

not realize that they could put two responses in the same box. Therefore,

these subjects were not included in consideration of whether subjects

learned. Out of 73 subjects, 14 fell into this category, leaving 59

subjects who followed the instructions. These figures are broken down

for the S and S subgroups in Table 2. S indicates all 3 S subgroups

combined.

We set tht_, following criterion for learning R3. When S1 = I, then

R3 = N is a correct response. If S1 = N, then R3 = N,I is a correct

response. If, somewhere in a subject's 72-trial response protocol there

is a sequence of 6 or more consecutive correct R3 responses, including

responses to at least 2 sentences of each kind, we say the subject learned

R3. Most of the responses in this sequence generally will be N,I since
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TABLE 3

Number of Subjects on'Part III:in:Various Categories

Total Subjects

Subjects who did
not use 2 responses

Subjects who
followed
directions

Subjects who
learned R3

Proportion of
subjects fol-
lowing directions
who learned R3

a; SW SA
Total

S S Total

13 13 13 39 34 73

2 4 7 7 14

11 12 9 32 27 59

11 8 7 26 24 50

1.00 .67 .78 .81 .89 .85
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more sentences begin with N than with I, but the criterion require,

that at least two of them be N and that these be In sentences starting

with I. This requirement is made so that a subject cannot be (vonsidered

to have learned simply by always saying N,I regardless of Sl,

By this criterion, Table 3 shows that 6 subjects in Groups S and 3

subjects in Group S,did not learn. In other words, 50 of the 59 subjects

(85 percent) who understood the instructions learned. Eighty-nine percent

of the S subjects and 81 percent of the S subjects who understood the

instructions learned. There is no significant difference between the S

and S groups (x
2
= 1.56, 1 df, p > .20). There is also no significant

difference from chance on this statistic between the three S sub-groups

(x
2
= 1.07, 2 df, p > .50). Of course, there are relatively few subjects

in each group, when we consider these subgroups. Also, the fact that there

is no difference between groups on this statistic does not mean that there

is no difference in learning among the groups. The learning rates could

still differ. We have provided evidence that most subjects learned R3, and

that groups did not differ on how many subjects learned R3.

Of the 9 subjects who followed directions but did not learn, inspection

of the response protocols showed that by the end of the 72 trials, 3 of the

subjects consistently responded N,I for R3, independent of Sl. The other

six subjects did not reveal any particular pattern. It seems possible that

the three subjects responding N,I were at asymptote and would not change

their responses if more trials were added. Since the other 6 subjects were

not caught in a pattern, they might have learned the correct responses if

more trials were added. In fact, some of these subjects almost met the

criterion of learning when the trials ran out.

Figure 8 shows the learning curve for the 50 subjects who met

criterion. The asymptote is almost 0, except for an occasional, possibly
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Insert Figure 8 about here

"accidental" error. It seems reasonable to conclude that these errors

are "accidental," i.e., that the subject learned, but for some reason

such as lack of attention due to boredom, did not make the correct

response. (A number of subjects complained that the experimental task

was too easy.) The learning curve merely shows in another way that these

50 subjects learned the correct response for R3.

R5 enters into our theoretical predictions in the same way as R3, so

we turn to it now, We say tnat a response is correct if, when S1 = I

and S3 = N or when S1 = N and S3 = I, the response is R5 = N, or when

Si = N and S3 = N, the response is R5 = 1. The criterion was the same

as for R3. A subject learned R5 if he had a sequence of at least 6

consecutive correct responses which included at least 2 N responses and

at least 2 I responses, By this criterion, none of the. subjects who did

not learn R3 learned R5. Of the 50 subjects who learned R3, all but 2

learned R5. Once again, we see that most of the subjects who followed

directions learned by this criterion, In the case of R5, 48 of 59 subjects

learned.

From now on we will consider the data of only those 50 subjects who

learned R3, because we do not know how to interpret the data of the

subjects who understood the instructions but did not learn. This involves

considering two subjects who did not learn R5, but for simplicity, and so

that we could use the same subjects on all tests, we included all 50

subjects even when considering R5, In Figure 9 appears the learning

Insert Figure 9 about here
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Fig. 8. Learning curve for R3. Some of the roughness
in the curve is due to different kinds of items.
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4 8 12 16 20 24
Block of 3 items

Fig. 9. Learning curve for R5. The curve contains
different kinds of items.
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curve for R5 for the 50 subjects. Once again the curve shows that subjects

learned. It is important to realize, when comparing this curve with the

curve for R3 (Figure 8) that although both curves plot the proportion of

"correct" responses, the correct responses differ for the two graphs, and

in fact, differ from trial to trial within each graph. For R3, the correct

responses are N or N,I and for R5, the correct responses are N or

I. The fact that the correct response set differs for R3 and R5 reduces

even more the probability of subjects giving a correct sequence by chance.

That is, we cannot compute the probability of subjects giving a correct

sequence by chance as if, for example, in R3, there is a probability p

that the response is N and a probability 1-p that the response is

N,I, and, for R5, there is a probability q that the response is N and

a probability 1-q that theresponse is I. We cannot simply do this

because this does not account for the subject's learning the response set

in the first place. S3 was always either N or I as was S5, so there

was no way for the subjects to learn the response sets strictly from a

consideration of what S3 or S5 could be.

A summary of these results is that, in general, subjects learned both

R3 and R5. Also, there was little tendency for subjects, at asymptote,

to respond N, I independently of the preceding sequence of words.

In Table 4 we list the mean trial of last error, L, for the six

responses for each group. As mentioned earlier, there are 50 subjects

Insert Table 4 about here

in the table. For responses R3 and R5, the trial of last error for each

subject is determined by the same method as described earlier for the

learning criterion; that is, the trial of last error is the trial before
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TABLE 4

Mean Trial of Last Error, L, by Response and Subject Group.

---Total
S s,§SW SW SA

Total

S

R1 16.5 27.8 7.4 17.5 19.0 18.3

R2 6.7 8.3 6.6 7.2 8.4 7.8

R3 29.6 33.3 28.7 30.5 28,0 29.3

R4 8.1 15.1 5.7 9.6 10.5 10.2

R5 21.4 22.0 25.0 22.5 14.1 18.5

R6 3.7 3.4 5.4 4.1 4.6 4.3

R1,R3,R5 22.4 27,7 20.4 23.5 20.4 22.3

R2,R4,R6 6.2 8.9 5.9 7.0 7.8 7.4

Grand
Mean

14.3 18.3 13.1 15.3 14.1 14.9
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the occurrence of the first run of at least six correct responses which

include at least two of each kind of correct response. For R1, R2, R4,

and R6, for each of which there is only one correct response, L is

simply the trial before the start of the first run of six or more

correct responses.

Table 2 shows clearly that responses R2, R4 and R6 (the "even"

responses) were learned more quickly than were R1, R3 or R5 (the "odd

responses"). The mean of L for the odd responses for Group S (23.5)

is more than 3 times as great as the mean for the even responses (7.0).

For Group S, the ratio is almost as great (20.4 to 7.8). In fact, if we

look at the means for each response we see that none of the 3 even

responses has a mean L value as great as any of the 3 odd responses.

This last statement holds also within each sub-group of S. For any

group, there are 6.1 possible ways of ordering the 6 responses with

respect to L. Thirty-six of these yield orders compatible with the

above statement; that is, the odd values are all greater than the even

values. Thus, if we assume the orders were chosen uniformly, the

probability of obtaining an ordering compatible with the statement is

36/61 = .05. Since there were four independent groups (three subgroups

of S plus 8), the probability of obtaining our results by chance is

(.05) 4 < 10-5.

Inspection of the distributions of L show that there are a few

fairly high values. To make sure the results we report for L are not

unduly influenced by these high values, we also calculated medians for

all the values. The medians are shown in Table 5. The pattern of the

resu:1;= is the same as for the means shown in Table 3. Therefore, we do
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Insert Table 5 about here

not discuss these values, but instead concentrate on the means.

Table 6 shows the mean number of total errors, T, for each group.

Insert Table 6 about here

This statistic behaves almost exactly like L with respect to the

questions we have been considering. Subjects made many more errors on

the odd responses than on the even.

In computing the trial of last error, L, for R3 and R5, we demanded

a criterion of 6 in a row correct, including at least two of each kind of

trial. This may have caused L to be slightly nigher for R3 and R5 than

for the other responses. But this is a very small effect. We recomputed

L for R3 and R5, relaxing the requirement of two of each kind of trial,

and found that the pattern of results did not change. This criticism does

not apply to the computation of the statistic T.

Are the mean trials of last error smaller for S than for S?

Generally, no, as may be seen from Table 4, Table 7 shows values of

student's t for the difference between means for the six responses.

Insert Table 7 about here

For 50 subjects, the only significant value is for R5 (p < .05). In fact,

the other t values are much smaller than R5's. The only other response

for which the mean value of L is greater for S than for S is R3.

These results show that, in general, the S group did not learn faster

than the S groups. Figure 10 shows the learning curves separately for

the S (24 subjects) and S (26 subjects) groups for the six responses.

Insert Figure 10 about here
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TABLE 5

Median Trial of Last Error, L.

SW SW SA

R1 10.0 23.5 6.0 10.5 16.0

R2 4.0 7.0 5.0 5.5 6.0

R3 21.0 32.0 23.0 28.5 26.5

R4 5.0 15.5 5.0 6.5 8.5

R5 21.0 17.5 24.0 21.5 12.0

R6 3.0 1.5 5.0 2.5 3.0

-
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TABLE 6

Mean Number of Total Errors, T.

SW SW SA
Total

S S

Total
s,s

R1 15.4 27.9 7.0 17.0 18.5 17.7

R2 6.5 9.0 9.1 8.0 7.3 7.6

R3 20.6 23.9 1B.0 21.0 20.3 20.6

R4 7.5 9.6 5.4 7.6 8.8 8.2

R5 12.5 11.3 18.3 13.7 9.7 11.8

R6 4.5 2.5 6.6 4.5 3.9 4.2

R1,R3,R5 16.2 21.0 14.4 17.2 16.2 16.7

R2,R4,R6
_--------__

6.2 7.0 7.0 6.7 6.6 6.7

Grand
Mean

11.2 14.0 10.7 11.9 11.4 11.7

'74 -



TABLE 7

Values of t for the Difference Between Mean Trial
of Last Error, L, of the S and S Groups on R3.

Response R1 R2 R3 R4 R5 R6

t 0.26 0.73 -0.52 0.38 -2.16 0.46
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These curves as well as the mean number of total error (Table 6) fit the

same pattern of results with respect to the differences between S and S.

Remembering that two of the subjects did not learn R5, it occurred

to us that this may have somehow influenced the results concerning the

difference between the S and S groups on R5. We included these two

subjects in the data, and took as their trial of last error, since they

did not meet criterion, the actual last trial of the 72 on which an

error occurred. It turned out that this value was 70 for both subjects,

and both subjects were in Group S. Although the subjects in the table

were chosen statistically so as not to favor Group S (they were chosen

on the basis of whether they had learned R3), it might be argued that

accidentally subjects who had not met criterion on R5 were selected for

S and this pushed up the mean value of L for R5. Therefore, we did

a new calculation of L for R5 for Group S, discarding these two

subjects, and calculating the mean L for the 24 remaining subjects.

The new value was 18.5 for L, which, compared to the 14.1 for Group S,

still yields the largest discrepancy between L for S and S of any

response. Therefore, even if one accepts this argument, Group S did

better on R5 than Group S did.

As explained earlier, we ran S in 3 different subgroups under

different conditions, so that in case S learned faster than S, we

could see if the difference could be explained by a particular factor.

If we look at the mean L value over all responses, group SW had the

highest value (18.3) and group SA had the lowest value (13.1). However,

as we stated in the previous paragraph, the only significant difference

between S and S was on R5, and oh this response the mean values of
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L for the 3 S subgroups are about equal, and all are much greater than

for Group S. Since there is no explainable difference between S and

S by these S control groups, we do not consider these subgroups, but

lump the data and consider only the one S group. One short point can

be made about Group SA however. Since this group did not even know the

algebraic character of the sentences, we had expected them to do worst

on the syntax responses; but in fact, their score was best. However,

note that on R5 their mean trial of last error is higher than for the

other two subgroups.

In analyzing the difference between the S and S groups, we work on

the assumption, of course, that because the groups were chosen randomly,

there was no difference between the groups except for the different

treatment in the experiment. However, we have some direct evidence.

Part II of the experiment was conducted before there had been any

different treatment for the different groups. By looking at differences

in the learning of Part II, we could.see_if there was any evidence of

differences between the groups not related to experimental treatment.

In Table 8 we show the mean number of total errors for Part II for Groups

S and I, for subjects who learned R3 and for subjects who did not learn

R3 (including those who did not follow instructions).

Insert Table 8 about here

The results are summarized by saying that subjects who did not learn R3

made more errors on the number learning, and subjects in Group S made

more errors than subjects in Group S. (Between learned and did not

learn, t = 1.96, .05 < p < .1; between S and g, t = 1.17, p > .1).
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TABLE 8

Mean Number of Errors on Number Paired-Associates
(Part II) for Groups S and S for Subjects Who
Learned R3 or Did Not Learn R3.

Learned R3 8.1 10.3

...11M111.

Did Nct
Learn R3 11.7 13.3
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These results suggest that subjects who did not learn R3 were poorer

learners in general (whether for motivational or other reasons we do

not know), and that subjects in Group S probably were slightly poorer

learners than subjects in Group S. The fact that S subjects did better

on four of six responses in Part III together with this last fact once

again suggests that semantics does not have a general improving effect

on syntax learning.

We have seen that R2, RA and R6 were learned faster than RI, R3 and

R.5. This finding agrees with the prediction made from the 1-memory store

model. It is not the case however, that the only difference between the

even and odd responses is the one that led to our prediction. The

correct response for RI contains two components (I,N), and one of the

correct responses for R3 also has two components (I,N). But the even

responses have only one correct response (T,W or D). There may be

something which caused subjects to be less ready to respond with two

letters than with one. R5 however, did not meet this difficulty. Both

correct responses are only a single letter (I or. N), and R5 was learned

more slowly than any of the even responses. This built-in control thus

helped us decide that the difference between the even and odd responses

was due to the even responses being learned in such a way that trials

with different pasts contributed to learning. In other words, the

Equations (2) in Section II are more correct than the Equations (1),

However, there is an even more direct way to test this, as we

showed in Section II, and that is to look at whether, say, T was learned

independently on trials with different histories. Figure 11 shows the

learning curves for Groups 8 and S for R2, R4 and R6 for the first 10
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Insert Figure 11 about here

trials. (After 10 trials on these responses there were relatively few

errors,) The abscissa is trial number, and the ordinate is proportion

of errors. The trials on which S1 = I (that is, the first word

presented is I), are plotted by x's. These are trial numbers 1,4,7.

The other trials are plotted by dots. Now, if the responses for the

two kinds of trials were learned independently, the learning curve would

not be a monotonically decreasing curve. Rather, points 4 and 7 would

jump way up. In fact, if we assume that the learning rates were equal

for the two kinds of trials, the trial-4 point would jump up to the

trial-3 point, and the trial-7 point would jump up to the trial-5 point

(assuming no interference). On the other hand, if all the trials (i.e.,

both kinds) count equally toward the learning of the response (i.e., if

we assume that all the trials form a sequence of learning trials on the

same response), then we should obtain a monotonically decreasing learning

curve of the usual kind, with trials 1,4 and 7 falling into place. The

curves plotted in Figure 1.1 show that this latter result is the case.

The Si = I trials appear as they would if the ten trials were a learning

sequence on one response.

As a comparison, in Figure 12 the learning curves for the first 10

trials for R3 and R5 are plotted° For R3, the x's are trials on which

Insert Figu-e 12 about here

S1 = I and dots are trials on which S1 = N. It is clear that the curve

here is not monotonic, rather the x points are much lower than the dots.

In the R5 curve, the x's are trials on which either Si = I or S2 = I, and
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the dots are trials on which S5 = I. Here it is also clear that the

curve is not monotonic, the x's representing fewer errors. We may

conclude that R2, R4 and R6 were not learned independently on the

different kinds of trials.

Semantics Learning. Figure 13 shows the learning curve for the

number (answer) responses for Group S. (Group S had no such answers.)

Insert Figure 13 about here

There are two curves, one for the 24 subjects who learned R3 and one for

the 10 subjects who did not learn R3. It can be seen that the subjects

who learned R3 learned the numbers faster than the subjects who did not

learn, but there is no way to tell from this data whether subjects

learned the numbers slower, because they did not learn R3 or whether

they were slower learners and thus learned both R3 and the numbers

slower. However, we have already reported data showing that the non-

learners learned the Part II responses slower than did the learners.

Thus a general difference in learning ability is probably at least part

of the explanation for the difference here.

Both groups of subjects approached an asymptote of no errors. So

this simple semantic system can be learned quite readily. Since this

system is somewhat simpler than the syntactic system discussed earlier,

let us look at some of the properties of learning the system. A simple

one-element model will not work because inspection of the data reveals

that there were more errors on the first few trials, even when trials

after the last error were excluded. However, another possibility

suggests itself. Many of the responses were wrong because they are sums
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of the two numbers in the sentence when they should be differences or

vice versa. We assume that at first the subject did not even respond

with sums or differences. In this state the subject answered randomly

or made no response at all. We can assume one-element learning to take

the subject into state SD, where he mostly responed with an answer which

is the sum or difference of the two numbers, but whether the answer is

a sum or difference does not depend on the stimulus sentence. In this

state we can assume one-element learning of which kind of sentence means

"sum" and which means "difference." When the subject learned this he

responded correctly on all trials.

These assumptions can be made more precise by writing the Markov

chain transition matrix and the vector of state response probabilities.

The response probability Pr(8D) is the probability of making a

response which is the sum or difference of the numbers presented in the

stimulus sentence. The matrix and probability vector are

Trial
n

Trial n 1

L SD

L 1

Pr(SD)

0 0 1

SD d 1-d 0 p

U 0 c 1-c 0

We assumed that in the unlearned state the probability of a subject's

making a sum or difference response is 0 even though it might be a little

higher than that because when the subject guessed a numeral he might

have guessed such a response. However, the probability is quite a bit

smaller than 2/10 (there were 10 possible answers, as the subject knew)

because many responses in the early part of the response protocols were

blank.
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It is important to realize that this theory does not distinguish

between the two kinds of sentences, i.e., Sum (S) sentences, where the

sum of the numbers is correct and Difference (D) sentences, where the

difference of the two numbers is correct.

The transie.on matrix is the same as for some cases of the two-

element model (e.g., Bower and Theois, 1964). We attempted to estimate

parameters for the above model by applying the methods of Greeno (1968).

This analysis was more appropriate than other analyses because it allowed

subjects to start in a state other than the unlearned state. Since some

subjects were correct on the first trial this was necessary. Greeno's

Case 2 analysis was applied, which was the natural one for our data. The

theory was applied to the 24 subjects who learned R3, using Greeno's

matched-statistics estimates for parameters. However, no matter what

identifying restriction was assumed (i.e., learning on correct or error

trials out of the intermediate state is equivalent, or there are no

transitions to the learned state from the unlearned state), the estimates

were not acceptable, some of them either being negative or greater than

one. The problem is that we have too little data for making reliable

estimates of statistics, there being only 24 learning sequences. For

example, an important statistic in the estimation method is the number

of errors before the first correct response made by subjects who made no

,:rrors after the first correct response. However, there were only four

such subjects in our data, and thus, the estimate could not be considered

reliable. Since these methods just did not work, there is no reason to

analyze them further. If we were interested primarily in this question,

an experiment could be arranged which would allow a better test of the

model.
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One prediction from such a model is the following. If in the unlearned

state the subject never makes a sum or difference response, and if in the

intermediate state he makes such a response with constant probability,

then the plot of proportion of errors versus trials after the first sum

or difference response, for responses before the last error, should be

horizontal. Figure 14 shows this plot. It looks roughly flat, though

Insert Figure 14 about here

we have left out trials at the end where there were only a few subjects.

2 ,

X between theory and data) = 3.04, 4df, p > ,50. A t test of the

difference between the number of errors in the first half and second

half of a subject's protocol (responses after first correct and before

last error) is significant (t = 2.14, 23 df, p < .05), more errors

occurring in the second half. However, the significance is due to a

small variance, the mean numbers of errors for the two halves differing

by less than 1.

The model makes another prediction, a prediction which relates

specifically to the difference and slim sentences. Let Pr(S/D) be the

probability of giving a sum response to a difference sentence, and

define the other three probabilities likewise. Then the model predicts

that in State SD, Pr(S/D) = Pr(D/D) and Pr(S/S) = Pr(D/S). Once again

we look at trials on which we know subjects were in state SDrthose

after the first sum or difference response and before the last error.

Table 9 shows the above probabilities for these trials. We see that the

Insert Table 9 about here
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Fig. 14. Stationarity curve for number responses after first
sum or difference response and before last error.
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TABLE 9

Probability of Giving a Sum or Difference Response
to a Sum or Difference Sentence. Only Trials after
the First Sum or Difference Response and before the
Last Error are Included.

Response

Sum Difference

Stimulus
Sentence

Sum .53 .06

Difference .35 .37
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model is wrong in this prediction. The subjects are much more likely to

give a difference response to a difference sentence than to a sum

sentence. Somehow the subjects have some knowledge about sum sentences

and do not give difference responses to them.

Part IV -amatacaily1,s1rni_Ez.

There can be two kinds of errors in Part IV, either a 1 response

where a 0 was correct (i.e., calling the sentence grammatical when it

was ungrammatical) or a 0 where a 1 was correct (calling the sentence

ungrammatical when it was grammatical). For now we consider both kinds

together and simply call them errors. Figure 15 shows the learning

Insert Figure 15 about here

curves for. Part IV for the 50 subjects who learned R3 and for the 23

subjects who did not learn R3. Excluded from the curve is trial number

16, because the reading of the sentence was garbled. The number of

errors for this response was higher than for the responses adjacent to

it, but this was doubtless due to the lack of clarity of the sentence.

For each trial, whether the sentence was grammatical (1) or ungrammatical

(0) is indicated at the bottom of the figure. Asterisks indicate the

four special ungrammatical sentences in which sentence words were inter-

changed.

First we see that, as a group, subjects who learned R3 also learned

Part IV. The mean number of errors per subject per trial over the last

6 trials is .03. If the subjects guessed 0 or L with probability Z each,

the mean would be .50. Did the subjects start Part IV always being

correct? Since they had learned R3 by definition (that is, by selection

of subjects) and since, according to the results discussed for Part III,
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they also learned R1 and R5, it is possible that they could have done

perfectly on Part IV from the start. That is, because the response rule

for R1, R3, and R5 could have been coded as "the stimulus is always an

I. or N, and there is exactly one I," the subjects might have used this

to respond correctly on Part I.V.

But it is clear that the subjects did not start out by almost always

being correct. The proportion of errors on trial 1 was only .08, but on

trial 2 it shot up to 0,44. Note that on trial 1 a grammatical sentence

was presented but on trial 2 an ungrammatical sentence was the stimulus.

Since the proportion of errors on trial 1 is only .08, it seems clear

that subjects did not guess 0 and 1 each with probability 1/2. But could

they be simply guessing 1 with probability close to 1? No, because then

the proportion of errors on trial 2 would be close to 1, instead of .44.

The question is, do subjects recognize at first that a sentence with

"ikutsu" appearing twice (i.e., an ungrammatical sentence) is different

from one that has only one "ikutsu?" If they did not distinguish

between them, the proportion of errors on trials 1 and 2 would not be

different (i.e., if the subjects were guessing independently of the

stimulus sentence, no matter.what the guessing probability, the expected

proportions of errors on the two trials would be the same. This assumes,

of course, that no learning occurs between the first and second trials.

But there seems no reason to suppose that learning to distinguish

between a G sentence and a U sentence would occur as the result of one

exposure to a G sentence. And if learning did occur, the proportion of

errors for trial 2 would be lower than for trial 1, not higher, which

was the actual result). Therefore, it seems likely that from the start



subjects discriminated the ungrammatical from the grammatical sentences,

but had to learn how to respond to them.

Bearing these results in mind, let us look at the results for the

23 subjects who did not learn R3. Table 10 shows the mean number of

Insert Table 10 about here

errors per subject for both groups (i.e., those who learned or did not

learn R3). The number of errors is greater for the group that did not

learn R3 than for the group that did learn. This is a result we would

expect, since if a subject did not learn R3 we might assume he had not

learned that an I could not appear twice. But suppose we assume that

the subject had learned nothing about this. Once again this would lead

us to predict that the proportions of errors for trials 1 and 2 would

be the same, Figure 15, however, shows this is not the case; the

proportions are ,09 and ,57, respectively, These proportions are not

way out of line with the proportions for subjects who learned R3. The

best explanation for this result seems to be that even subjects who did

not learn R3 by our definition learned the structure of the syntax, i,e,,

that. I appeared exactly once. Remember that many of the subjects in

this group had never used two responses in a box, i,e,, they had not

followeo directions. Also, only three subjects had locked into an R3

response of N,I. What seems to have happened then is that even most of

the 23 subjects in this group learned the structure or something about

the structure, which leads to the different proportions between trials

1 and 2.

Table 11 shows the number of subjects in each group who made at

least one error on the last 6 trials, Consistent with the results we

Insert Table 11 about here

9'6 -



TABLE 10

Mean Number of Errors in Part IV,
Grammaticality Judgments.

Total
SW SW SA

Learned R3 4.8 2.8 2.9 3.4 6.5

Did Not Learn
R3 13.8 4.0 18.5 14.5 10.3

_ 9,



TABLE 11

Proportion of Subjects who Made at Least One Error
on Last 6 Items of Part IV, Grammatical Judgments.

S S Total

Learned R3 .17 .04 .10

Did Not Learn
R3 .30 .62 .48

_ 98 _



have already discussed, the subjects who did not learn R3 had proportionately

higher scores on this statistic than subjects who did learn. In fact, 11 of

the 23 non-learning subjects made at least one error on the last 6 trials.

It is possible that some subjects who did not learn R3 because of lack of

ability or motivation had the same effect on Part IV. This is substantiated

by the fact that these subjects also did less well on Part II.

Now let us turn to the four special ungrammatical sentences. We can

read the proportion of errors for each from Figure 15. The first of these

sentences was presented on trial 9 and read "ikutsu desuka 1 wa 3 tasu."

In other words, "tasu" and "desuka" were interchanged. Considering the

50 subjects who learned R3, only a proportion of .02 of them called this

sentence grammatical. The second of these sentences appeared on trial 17

and read "0 5 tasu wa ikutsu desuka." In other words, "tasu" and "5" were

interchanged. The proportion of errors was .38. This proportion was much

higher than the proportion for the trial immediately preceding and

following it. The third sentence was number 30 and was supposed to have

read "2 ikutsu tasu wa 3 desuka." In other words, "ikutsu" and "tasu"

were interchanged. However, the speaker made an error and instead of

saying "tasu" he said something that sounded like " "des." In other words,

a new word was introduced to the subjects. The proportion calling this

sentence grammatical was only .10. However, this proportion was doubtless

low because of the introduction of the new word, so we will not consider

this sentence. The fourth sentence was number 42 and read "ikutsu wa 2

tasu 4 desuka." Here "wa" and "tasu" were interchanged. The proportion

of subjects responding 1 (grammatical) was .44. Once again, this

proportion was mlch larger than for the sentences immediately preceding

and following it.



The question that strikes us is, why is the proportion of errors so

much higher for sentences 1.7 and 42 (.38 and .44) than for sentence 9

(.02)? Two explanations suggest themselves. First, consider the "word

distance" between the two words interchanged to make the ungrammatical

sentence from a grammatical sentence. This is 1 plus the number cf

words between the two words in the grammatical sentence. This measure

for the three sentences is; for sentence 9 the distance is 4, for

sentence 7 the distance is 1, and for sentence 42 the distance is 2.

So it is a question of distance 4 on the one hand versus distances 1

and 2 on the other. It might be that this distance is a good measure

of sentence grammaticality. The greater the distance the more chance

the sentence will be called ungrammatical.

However, another possibility is that sentence 9 was heard as

ungrammatical because it put "desuka" out of place. " Desuka" is the

last word of every sentence and signals the subject that the sentence

is over When it did not appear there, but tasu appeared in its place,

this was probably very salient to the subject. As we saw previously,

"desuka" (R6) was the response learned quickest in Fart III. This was

doubtless not because of the properties of the word, but because it

appeared last.

There is no way to distinguish in this experiment between these two

possibilities. An experiment could be done varying this "word distance"

and having subjects judge grammaticality. However, there does seem to

be one solid conclusion from the results. That is that subjects make many

more errors in this part on the few sentences which interchange function

words than on the sentences which include "ikutsu" twice, Whether this
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is due to more practice on the latter or to some other reason is not

clear.

In summary, Part IV mainly confirmed our belief that on Part III,

subjects learned the language J. It has also provided evidence that

some subjects who did not learn R3 by our definition did indeed learn

the lanvage J.
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VI. Discussion and Summary

The major point of our study was to try to decide what kind of

automaton best represents a subject's behavior in the experiment. First,

we noted that if the subject became an ordered-state finite automaton,

he would not learn the syntax of J. The results presented in the last

section show that most of the subjects who followed the instructions

learned, and that of those who did not, only three behaved at asymptote

in the way a sequential finite automaton such as Af might predict. Also,

the results of Part IV of the experiment suggested that even the nine

subjects who did not learn R3 by our criteria learned much of the

structure of J. We may safely conclude that, in general, subjects did

not behave as if they became ordered-state finite automata.

We predicted that if subjects became either general finite automata

or ordered-state 1-memory store automata, then they would learn, as they

could become either or . However, we noted a way to distinguish

between these two automata. By making a general assumption about the

course of learning on finite automata and 1-MS automata, we could write

equations (1) in Section II for / and equations (2) for A The equa-

l.
tions for the finite automaton predict that R2 is learned at the same

rate as R1, while the equations for e4 predict that R2 is learned faster

than Rl. By the same reasoning that produced these equations, we can

derive similar equations which predict for that R4 is learned at the

same rate as RI and for dg that R4 is learned faster. From both I.

and J we predict that R6 is learned faster than RI. The difference

between R2 and R6 here is that in jc the pair (s9,D) appears on every

trial. It is clear that we cannot write a finite automaton that will
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behave like R6 for all responses, including R2 and R4, since then we would

have an ordered-state finite automaton, and we saw in Section II that no

ordered-state finite automaton can respond correctly to J.

Now, the above predictions are made with respect to Rl. But by

exactly the same reasoning, we see that predicts that R3 and R5 are

learned at the same rate as R2 and R4, while ./' preCcts that R2 and R4

are learned faster. Both automata predict that R6 is learned faster than

R3 or R5. In short, predicts that R1 through R5 are learned at the

same rate, while J predicts that the even responses (R2,R4) are learned

faster than the odd responses.

We saw in the last section that, in fact, no matter what statistic

we looked at, all the even responses were learned faster than the odd

responses, and this result even held across the four sub-groups. These

results make it clear that the predictions from .A are much closer to

the experimental data than are the predictions from /. In this

experiment, at least, subjects behaved more like a 1-MS than like a

finite automaton.

An alternative explanation of our results might be proposed. This

is that, for some reason, it is difficult for the subject to learn those

responses where a two-letter response is correct. This would explain

why Rl and R3 were learned slowly compared with the even responses, but

it would not explain why R5 was learned more slowly than the even responses,

because the correct responses for R5 contained one letter (N or I depending

on the history). This built-in control rules out the two-letter

explanation.

Also, note that the usual serial position effect could not explain

our results. The results do not at all fit a bowed serial position curve
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(where the serial position is R1 through R6). In fact, an error curve

through the results (as well as predictions) changes its direction (i.e.,

the sign of the first derivative) at every point, For example, there

are more errors for R3 than for R2 or R4, and this could not occur in a

bowed _1,91 position curve.

In addition to the above predictions, as we saw in Section II, our

learning assumption together with predicts that each kind of trial

is the same, Specifically, (C. predicts that the learning curve over all
/'

the trials should be monotonically decreasing, but that the points for

one of the kinds of trials should come up. We saw in the last section

that the curves were monotonically decreasing for both even responses.

Once again, the 1-MS 16 is more appropriate for the data.

We also wanted to look at the effects of semantics practice on the

learning of syntax. The hypothesis that semantics acts as a motivator

only predicts that the semantics group would do better than the non-

semantics group on all the responses, The hypothesis that semantic

structure restricts the range of possible syntactic structures predicts

that., since this restriction only affects R3 and R5 (since these responses

are the only ones affected by the history of the sequence), the semantics

group would do better on these responses, but there would be no difference

on the other responses between the two groups.

The results show that indeed there was no difference on mean trial

of last error between the two groups on RI, R2, R4 and R6, as the

restriction hypothesis suggests, and that the semantics group did better

on R5, again as the restriction hypothesis suggests. On the other hand,

R3 was not significantly better for the semantics group. However, the
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mean was smaller for the semantics group on R3, and this was the only

response besides R5 for which this was true. At any rate, since R5 was

the one response for which the semantics group did significantly better,

these results, though less conclusive than our results on the syntax

learning, suggest that the restriction hypothesis predicts the data

better than does the motivation hypothesis.

We also saw that the semantics system (correct number responses)

was learned by the subjects. There was some evidence that before the

subjects were in a state in which they always answered correctly, they

were guessing numbers which were sums or differences of the two numbers

presented in the sentence.

Do our results suggest anything about language learning in general?

It is of some interest that a finite automaton did not turn out to be an

appropriate representation for the subject in our experiment. Of course,

the language we dealt with was a finite language so that it is not a

question of generative capacity. Our 1-MS is much weaker than the

general PDS automata. On the other hand, a crucial part of the PDS

structure remains in our version and distinguishes it from finite

automata. This structure is that there is memory besides the state of

the autamaton. Perhaps our experimental results are generalizable to

more complex languages, including languages with loops, which we have

not considered at all in this study.

Our results on semantics suggest that studies of syntax learning

that do not include a semantic model may be losing an important

component of syntax learning. The results seem to suggest that semantics

acts as more than a motivator.
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In general, we feel that the value of our study lies in the fact

that it provided experimental evidence for the kind of automaton a

person could become. The predictions from the automata included both

predictions about whether a person who became a given kind of automaton

could learn a given language, and also predictions about how a language

would be learned. These predictions allowed us to distinguish between

various kinds of automata. Perhaps future work on more complex

languages will confirm our results.
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Appendix I. Transformational Rules for Arithmetic

Our purpcse is to list the transformational rules for a subset of

spoken arithmetic in English and Japanese. We do not give any discussion

of the rules. Our goal is mainly to show that spoken arithmetic can be

generated by a miniature linguistic model having the properties of the

model discussed in Section III,

Notation is the standard linguistic one. All transformations

(except the lexical ones) are described by an analysis, which is a cut

of the phrase-marker of a sentence, and a permutation of that analysis.

For each transformation, we call the analysis A and the permutation P.

When we write BLOCK, it is the same as writing the empty string, but we

do it this way for graphic purposes. The transformations are ordered

and, except for those labelled otherwise, are obligatory. The trans-

formations apply to the base in Table 1,

The BLOCK transformations are used to delete strings that do not

have the proper number of x's (variables) for the given sentence. This

is related to the discussion of base strings whose meaning is empty in

Section III. However, some strings are deleted whose meaning is not

empty, namely, strings with more than one variable, since there is no

natural way of asking such questions in the spoken language, especially

when the two variables are not adjacent.

In the rules, capital letters X,Y,Z are variables taking strings as

arguments. When such a letter appears, any string can be inserted.

Small x is the variable in arithmetic,
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EI:cr.lish Transformations

A. Lexicon

0 . zero

1 one

2- two

3 . three

4 four

5 . five

= . equal

+ . plus

. minus

o -0 times

/ . divided by

( -4 0

)

B. Sentence Transformations

1. T
BL1

2. Tn
"(whl

3. T,
"(wh2

4. T
BL2

5. T
BL3

6. Tn

"(`IN

7. T
CA.

8. T
CS

9, T(2,4

10. T
CD

A = X,x,Y,x,Z
P = 1 2 3 4 5 - BLOCK

A.= Qwh,X,x,Y,=,Z

P= 1 2 3 4 5 6 - 2 what 4 is 6

A = Qwh,X,=,1192(9Z

P= 1 2 3 4 5 6 - 2 is 4 what 6

A
Qwh'X

P= 1 2 . BLOCK

A = X,x,Y
P = 1 2 3 - BLOCK

A QYN'X'='Y
P= 1 2 3 4 . Does 2 3 4

A = C,(,N,+,N,)
P = 1 2 3 4 5 6 . Add 3 and 5

A = C,(,N,-,N,)
P= 1 2 3 4 5 6 -. Subtract 5 from 3

A = C,(,N,,,N,)
P = 1 2 3 4 5 6 . Multiply 3 by 5

A = C,(,N,/,N,)
P = 1 2 3 4 5 6 . Divide 3 by 5
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Japanese Transformations

A. Lexicon

0 -4 zero

1 ichi

2 -4 ni

3 -. san

4 -4 shi

5 go

= wa

+ -4 tasu

- -4 hiku

. -4 karu

/ waru

( " 0

) " 0

B. Sentence 'transformations

1. T
BL1

2. TA
scwhl

3. TA
"cwh2

4. T
BL2

5. T
BL3

6. T
YN

7. T
C

A = X,x,Y,x,Z
P= 1 2 3 4 5

A= 0
ca

N
'4 /

/,N,=,N
-b'

P= I 2 3 4 5 6 -4 1 2

-4 BLOCK

A = Qwh,X,x,Y

P= 1 2 3 4

A = Qwh,X

P = 1 2

A = X,x,Y
P = 1 2 3

A = QYN,X

P = 1 2
/-

A = i
0

/0
kara

P = 1 2 3 4 5 6 -4 3
/

ni

\O

ni
kara O.

3 to 6
ni 0
0 \dei

2 ikutsu 4 desuka

-4 BLOCK

-4 BLOCK

-4 2 desuka

4 te kudasai

In this last transformation we have ignored a morphophonemic rule that
takes, for example, tasu + te tashite.
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Appendix II. Experimental Instructions for Part III, Group S

Part III will probably be more difficult than the other parts. The

instructions are somewhat complex, so listen carefully. You are going

to learn some simple Japanese sentences. Each sentence contains six

words. You are already familiar with all the words. They are all either

the four words you became familiar with in Part I or they are the numbers

you learned in Part II. Your first job is to learn to predict what the

order of words is in each sentence. You will hear a tone (or a bleep)

on the television. Then you will write the letters for what you think

the first words can be in the first box. If you think the word will be

one of the four words you learned in Part I, write the first letter of

that word, for example, T for tasu. However, if you think the word will

be one of the numbers you learned, write N for number. Remember, do not

write the first letter of a particular number, rather write N for number.

In some sentences, in some positions, it is possible that more than one

word could occupy that position. In fact, sometimes two words could

possibly occupy a position. If you think only one word can occupy a

position, write the letter for that word before the comma in the box.

If you think two words could occupy the position, write both words, one

before and one after the comma. Remember, in some sentences, in some

positions only one word would be correct, and in some positions two words

would be correct. So do not always fill the space after the comma

because sometimes only one would be correct. The patterns are such that

sometimes a preceding word can influence what words can later follow.

So do not write all six answers at one time. Always fill in just one box,

then wait for the next word to be spoken. You have a few seconds to make
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your prediction. Then the actual word of the sentence will be said by

the speaker. This may be only one of the possible words that might

appear at that position. If you predicted this word you were correct.

If you predicted another word you might have been correct. Since at

most two words could have come in that position, if you predicted two

words and neither was said by the speaker, at least one of them was

wrong.

After you hear the first word of the sentence there will be a few

seconds' pause and you will then predict the second word of the sentence.

Then the third word will come, and so on, for the six words. Please do

not write any answers after you have heard the correct word. We have to

trust you, and it is very important to us to get your answers before

you have actually heard the correct answer. Look at your answer sheets.

Each row is for one sentence. The row of six boxes is for the six

predictions of the words in the sentences. The comma is there so that

you may predict two words if you wish. Please predict only words that

you feel might be correct. If you have some feeling that they are

correct, write them. But do not make completely wild guesses. If you

do not know any word you want to predict, put a dash in the box and

write the next answer in the next box. Are there any questions about

this part of the procedure?

There is one thing more to this part. Please listen carefully.

Each of these sentences is an actual Japanese sentence. And each one is

a sentence asking a question in arithmetic. The questions are about

addition. In algebra the questions they ask would be expressed by the

equations, for example, "1 plus 3 equals x," "1 plus x equals 3," and

"x plus 1 equals 3." That is, the required answer is the value of x.



These are the only sentences you will be hearing. In English, the

questions would be, perhaps, "1 plus 3 equals what," "1 plus what equals

3," and "what plus 1 equals 3?" Ncte that the answer to, say, "1 plus

what equals 3" is "2" whereas the answer to "1 plus 3 equals what" is

"4." That is, the answers are different. It is also your job in this

part to learn the meaning of these Japanese sentences, that is, to learn

what questions the sentences are asking. Remember, the sentences all

have the meaning of one of the 3 algebraic equations I mentioned before.

After you have heard the six words of each sentence repeated slowly,

and you have made your predictions, you will hear the same sentence,

repeated at a more natural speed. Then you have a few seconds to write

the answer to that sentence in the box to the right of the six boxes

and separated from it. Then the numerical answer will appear on the

screen. For example, if you think the sentence asked the question (in

Japanese), "x plus 1 equals 3," the number 2 will appear. If the

question is "1 plus 3 equals x," the number 4 will appear. Once again,

please do not write any answers after you have seen the correct answer.

If you do not know an answer put a dash in the box. Do not try to write

the Japanese number for these answers. Simply write the digit. The

answers are any number from 0 to 9. After the numerical answer appears

on the screen, a tone will once again be heard. This is your signal to

predict the first word of the next sentence. Are there any questions?
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